Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\sin a=\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)
\(P=4\cdot\sin^2a-6\cdot\cos^2a\)
\(=4\cdot\dfrac{9}{25}-6\cdot\dfrac{16}{25}\)
\(=\dfrac{36-64}{25}=\dfrac{-28}{25}\)
b: \(A=\sin^6a+\cos^6a+3\cdot\sin^2a\cdot\cos^2a\)
\(=\left(\sin^2a+\cos^2a\right)^3-3\sin^2a\cdot\cos^2a\cdot\left(\sin^2a+\cos^2a\right)+3\cdot\sin^2a\cdot\cos^2a\)
\(=1-3\sin^2a\cdot\cos^2a+3\sin^2a\cdot\cos^2a\)
=1
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=+\sqrt{\frac{9}{10}}\)
Vì tan dương nên có hai trường hợp :
TH1 : cả sin và cos cùng dương :
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
TH2 : cả sin và cos cùng âm
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)
b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)
bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)
\(\Rightarrow cosa=\pm\dfrac{4}{5}\)
\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)
bài 2)
ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)
b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)
c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)
\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)
ý 2 :
ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)
ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)
\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)
vậy ............................................................................
bài 3 bạn tự luyện tập như bài 2 cho quen nha :)
\(cosa=\frac{1}{3}\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\frac{2\sqrt{2}}{3}\)
Thay giá trị vào M và bấm máy