Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=0 <=> (a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>a2+b2+c2=-2(ab+bc+ca)
<=>(a2+b2+c2)2=[-2(ab+bc+ca)]2
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2b2+b2c2+c2a2)
<=>a4+b4+c4=2(a2b2+b2c2+c2a2) (1)
Lại có (ab+bc+ca)2 = a2b2+b2c2+c2a2+2abc(a+b+c) = a2b2+b2c2+c2a2 (vì a+b+c=0) (2)
Từ (1) và (2) => đpcm
Biến đổi tương đương:
\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)
b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
(a+b+c)2\(\ge\) 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\) 3ab+3bc+3ca
=>a2+b2+c2\(\ge\) ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2\(\ge\) 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2\(\ge\) 0 (đúng)
=> (*) đúng
\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)
Dấu "=" xảy ra khi \(a=b=c\)