Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Giải
Lưu ý : b2 = a.c ; c2 = b.d
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)
Vậy M = 1/2
Bài 2 :
Ta có : x - y cùng tính chẵn lẻ với x - y
: y - 2 cùng tính chẵn lẻ với y - 2
: 2 - x cùng tính chẵn lẻ với 2-x
=> | x - y | + | y - 2 | + | 2 - x | cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x )
= x -y + y - 2 + 2 - x = 0 là 1 số chẵn
=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn
=> không có x ; y ; z thỏa mãn điều kiện trên
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta có : x3 + y3 = z(3xy - z2)
=> x3 + y3 = 3xyz - z3
=> x3 + y3 + z3 - 3xyz = 0
=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz = 0
=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0
=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0
=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)
=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0
=> (x - y)2 + (y - z)2 + (x - z)2 = 0
=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)
mà x + y + z = 3
=> x = y = z = 1
Khi đó A = 673(x2019 + y2019 + z2019) + 1
= 673(12019 + 12019 + 12019) + 1
= 673.3 + 1 = 2020
Vậy A = 2020
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}\)
\(\Rightarrow M=\dfrac{3a^{2019}}{a^{672+673+674}}\)
\(\Rightarrow M=\dfrac{3a^{2019}}{a^{2019}}\)
\(\Rightarrow M=3\)
Có j sai thì mk xl nhé!
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(\text{ vì a+b+c khác 0}\right)\)
\(\Rightarrow a=b=c\)
\(P=\frac{a^{37}.b^3.c^{1979}}{b^{2019}}=\frac{b^{37}.b^3.b^{1979}}{b^{2019}}=\frac{b^{2019}}{b^{2019}}=1\)
\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)
\(=> (a+b+c)(1/a +1/b+1/c) = 1\)
\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)
\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)
\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)
\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)
\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)
\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)
\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)
\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)
\(<=> (b+c)[a(a+b) + c(a+b)] =0\)
\(<=> (b+c)(a+b)(a+c) =0 \)
<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)
\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)
Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)
Bài làm
Thay x = 1, y = -1 vào đa thức B. Ta được:
B = a.12.(-1)2 - b.14.(-1) + c.1.(-1)6
B = a . 1 . 1 - b . 1 . ( -1) + c . 1 . 1
B = a - ( - b ) + c
B = a + b + c
Mà a + b + c = 2019
=> B = a + b + c
Hay B = 2019
Vậy B = 2019
# Chúc bạn học tốt #
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó: \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
Thay a = b = c vào M
\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3.a^{2019}}{a^{2019}}=3\)