Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2
<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2
<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )
<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0
<=> a2 + b2 + c2 - 2.9 = 0
<=> a2 + b2 + c2 - 18 = 0
<=> a2 + b2 + c2 = 18
Xét ( a + b + c )2 ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
= ( a2 + b2 + c2 ) + 2( ab + bc + ca )
= 18 + 2.9
= 18 + 18 = 36
=> ( a + b + c )2 = 36
=> a + b + c = 6 ( do a, b, c là các số dương )
a2+b2+c2=ab+bc+ca
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a=b=c
mà a+b+c=3<=>a=b=c=1
=>P=0
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(3,0122015^2=a^2+b^2+c^2+2\left(a^2+b^2+c^2\right)\)
\(3\left(a^2+b^2+c^2\right)=9,073357877\)
\(a^2+b^2+c^2=3,024452626\)