Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2+4a+4b+2015\\ =\left(a+b\right)^2+4\left(a+b\right)+2015\\ =\left(a+b\right)\left(a+b+4\right)+2015\\ =1.\left(1+4\right)+2015\\ =5+2015\\ =2020\)
\(A=\left(a+b\right)^2+4\left(a+b\right)+2015=2020\)
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
a,= a\(^2\)+2a+b\(^2\)-2b-2ab+37
=a\(^2\)-2ab+b\(^2\)+2a-2b+37
=(a-b)\(^2\)+2(a-b)+37
⇒5\(^2\)+2.5+37= 25+10+37= 72
b,= a\(^3\)+a\(^2\)-b\(^3\)+b\(^2\)+ab-3a\(^2\)b+3ab\(^2\)-3ab-95
=a\(^3\)-3a\(^2\)b+3ab\(^2\)-b\(^3\)+a\(^2\)-2ab+b\(^2\)-95
=(a-b)\(^3\)+(a-b)\(^2\)-95
⇒5\(^3\)+5\(^2\)-95= 125+25-95= 60
Có: \(a^2+b^2=1-2ab\)
\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)
Mà: \(a>0;b>0\Rightarrow a+b>0\)
Do đó: \(a+b=1\)
Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)
Ta có : M=a3+b3+3ab
=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab
Ma : a2+b2=1-2ab
\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab
=(a+b)(1-2ab-ab)+3ab
=(a+b)(1-3ab)+3ab
=a+b
Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .
a(a + 2) + b(b - 2) - 2ab
= a2 + 2a + b2 - 2b - 2ab
= (a2 - 2ab + b2) +(2a - 2b)
= (a - b)2 + 2(a - b)
= 72 + 2.7
= 49 + 14 =63
\(a\left(a+2\right)+b\left(b-2\right)-2ab=a^2+2a+b^2-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=\left(a-b\right)^2+2\left(a-b\right)\)
Với \(a-b=7\)thì biểu thức có giá trị là: \(7^2-7=49-7=42\)