Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{4x+1}{x+3}\inℤ\Leftrightarrow4x+1⋮x+3\)
\(\Rightarrow4x+12-11⋮x+3\)
\(\Rightarrow4\left(x+3\right)-11⋮x+3\)
\(\Rightarrow11⋮x+3\)
\(\Rightarrow x+3\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-14;8\right\}\)
a) \(D=\frac{4x+1}{x+3}\)
=> 4x + 1 \(⋮\)( x + 3 ) để D là số nguyên
Mà ( x + 3 ) \(⋮\)( x + 3 ) => 4( x + 3 ) \(⋮\)( x + 3 )
=> [ 4x + 1 - 4( x + 3 ) ] \(⋮\)( x + 3 )
=> [ 4x + 1 - 4x + 12 ] \(⋮\)( x + 3 )
=> 13 \(⋮\)( x + 3 )
=> \(x+3\inƯ\left(13\right)\)\(=\left\{\pm1;\pm13\right\}\)
x + 3 | -1 | 1 | -13 | 13 |
x | 2 | 4 | -10 | 16 |
Vậy \(x\in\left\{-10;2;4;16\right\}\)Để D là số nguyên
b) \(E=\frac{6x+2}{2x-3}\)
=> 6x + 2 \(⋮\)2x - 3 để E là số nguyên
Mà ( 2x - 3 ) \(⋮\)( 2x - 3 ) => 3( 2x - 3 ) \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 3( 2x - 3 ) ] \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 6x - 3 ] \(⋮\)( 2x - 3 )
=> -1 \(⋮\)( 2x - 3 )
=> ( 2x - 3 ) \(\inƯ\left(-1\right)=\left\{\pm1\right\}\)
2x - 3 | -1 | 1 |
2x | 2 | 4 |
x | 1 | 2 |
Vậy x \(\in\left\{1;2\right\}\)để E là số nguyên
Còn phần còn lại cậu có thể làm tương tự.
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Ta có : \(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)
Mà B nguyên nên \(\frac{5}{\sqrt{x}-2}\in Z\)hay \(\left(\sqrt{x}-2\right)\inƯ\left(5\right)\)
\(\sqrt{x}-2\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 3 | 1 | 7 | -3 |
\(x\) | 9 | 1 | 49 | \(\varnothing\) |
Vậy \(x\in\left(1;9;49\right)\)
\(B=\frac{\sqrt{x}+3}{\sqrt{x}-2}\) \(ĐKXĐ:x\ne4;x\ge0\)
\(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)
\(B=1+\frac{5}{\sqrt{x}-2}\)
để \(B\in Z\)thì \(x\in Z\)
mà \(1\in Z\forall R\) nên \(\frac{5}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{\pm1;\pm5\right\}\)
mà \(x\ge0\) nên \(\sqrt{x}-2\in\left\{1;5\right\}\)
+ \(\sqrt{x}-2=1\) \(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\) (thỏa mãn )
+ \(\sqrt{x}-2=5\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\) ( thỏa mãn)
vậy \(x\in\left\{9;49\right\}\) thì \(B\in Z\)