Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99
=>A=1/2+12/22+13/23+...+198/298+199/299+199/299
=>A=1/2+1/22+1/23+...+1/298+1/299+1/299
=>2A-1/299=1+1/2+1/22+...+1/298
=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)
=>(2A-1/299)-(A-1/299)=1-1/299
=>A=1-1/299 +1/299=1
vậy A=1
chắc thế
\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)
=>B=\(1-\frac{1}{2^{98}}\Rightarrow B
\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)
\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)
B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
=> 2B=\(2\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]\)
=\(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\)
=>2B-B=\(\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]\)
=>B=\(1-\left(\frac{1}{2}\right)^{99}< 1\)
=> B<1