Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Bất phương trình đã cho
Đặt Bất phương trình trở thành
Chọn D.
Khi đó bất phương trình trở thành
Suy ra hàm số f(x) đồng biến trên
Do đó yêu cầu bài toán
Chọn B.
Đáp án B
Đặt t = 2 x > 1
PT ⇔ 3 m + 1 . 4 x + 2 - m 2 x + 1 < 0 ⇔ m 3 t 2 - t + t + 1 2 < 0 ⇔ m < - t 2 + 2 t + 1 3 t 2 - t = f ( t )
Xét hàm f ( x ) = - t 2 + 2 t + 1 3 t 2 - t trên khoảng 1 ; + ∞ ⇒ f ' t = t + 1 1 - 7 t 3 t 2 - t 2 > 0 với t ∈ 1 ; + ∞
Dựa vào bảng biến thiên, suy ra m < -2.
Đáp án D
B P T ⇔ 2 3 x + m − 1 3 x + m − 1 > 0 ⇔ 2 3 x − 3 x − 1 + m 3 x + 1 > 0 ⇔ m > 3 x − 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ * .
Xét hàm số f x = 3 x − 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ ,
ta có f ' x = 8 x ( ln 3 − ln 8 .3 x − ln 8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .
Suy ra f x là hàm số nghịch biến trên ℝ mà lim x → − ∞ f x = 1 , do đó min x ∈ ℝ f x = lim x → − ∞ f x = 1
Vậy * ⇔ m ≥ min x ∈ ℝ f x = 1 ⇒ m ≥ 1 là giá trị cần tìm.
Đáp án D
Ta có log 0 , 02 log 2 3 x + 1 > log 0 , 02 m ⇔ m > log 2 3 x + 1 (vì cơ số = 0,02 < 1)
Xét hàm số f x = log 2 3 x + 1 trên - ∞ ; 0 có f ' x = 3 x . ln 3 3 x + 1 ln 2 > 0 ; ∀ x ∈ - ∞ ; 0
Suy ra f(x) là hàm số đồng biến trên - ∞ ; 0 ⇒ m a x - ∞ ; 0 f x = f 0 = 1
Vậy để bất phương trình có nghiệm ∀ x ∈ - ∞ ; 0 ⇒ m ≥ 1 .
Đáp án B