K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
30 tháng 6 2017
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
CM
28 tháng 5 2019
Chọn B.
Phương pháp:
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.
Đáp án D
Đặt m = 3 a ta có log m 11 + log 1 7 x 2 + m x + 10 + 4 . log m x 2 + m x + 12 ≥ 0.
Dk: m > 0 , m ≠ 1 , x 2 + m x + 10 ≥ 0
Bpt đã cho tương đương với 1 − log 7 x 2 + m x + 10 + 4 . log 11 x 2 + m x + 12 log m 11 ≥ 0 *
Đặt u = x 2 + m x + 10 , u ≥ 0
+ với 0 < m < 1 : * ⇔ f u = log 7 u + 4 . log 11 u + 2 ≥ 1
f 9 = 1 và f u là hàm số đồng biến nên ta có
f u ≥ f 9 ⇔ x 2 + m x + 10 ≥ 9 ⇔ x 2 + m x + 1 ≥ 0
Vì phương trình trên có Δ = m 2 − 4 < 0 với 0 < m < 1 nên phương trình vô nghiệm
+Với m > 1 : f u ≤ 1 = f 9 ⇔ 0 ≤ u ≤ 9 ⇔ 0 ≤ x 2 + m x + 10 ≤ 9 ⇔ x 2 + m x + 10 ≥ 0 1 x 2 + m x + 1 ≤ 0 2
Xét phương trình x 2 + m x + 1 ≤ 0 có Δ = m 2 − 4 < 0
Nếu m > 2 ⇒ Δ > 0 ⇒ p t vô nghiệm 1 , 2 ⇒ bpt vô nghiệm
Nếu m = 2 ⇒ p t 2 trên có 2 nghiệm thỏa mãn x = − 1 ⇒ bpt có nhiều hơn 1 nghiệm
Nếu m = 2 ⇒ p t 2 có nghiệm duy nhất x = − 1 ⇒ bpt có nghiệm duy nhất x = − 1
Vậy gtct của m là m = 2 ⇒ a = 3 2