Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}1-2x+x^2\le8-4x+x^2\\x^3+3x^22+3x2^2+2^3< x^3+6x^2+13x+9\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}2x\le7\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x\le\frac{7}{2}\\-x< 1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x\le\frac{7}{2}\\x>-1\end{matrix}\right.\)
nên hệ có nghiệm S=\(\left\{0;1;2;3\right\}\)
Tổng nghiệm nguyên lớn nhất và nhỏ nhất của hệ là:0+3=3
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
\(\hept{\begin{cases}x+m\le0\\-x+5< 0\end{cases}\hept{\begin{cases}x\le-m\\x< -5\end{cases}\hept{\begin{cases}x\in\left(-\infty;-m\right)\\x\in\left(-\infty;-5\right)\end{cases}}}}\)bạn sửa lại chỗ trên nha là nửa khoảng
\(+-m\ge-5\)
\(m\le5< =>\)tập nghiệm của HPT \(S=\left(-m;-\infty\right)\)
\(+-m< 5\)
\(m>5< =>\)tập nghiệm của HPT \(S=\left\{-\infty;-5\right\}\)
Thay \(x=-3\) vào bất phương trình (1) ta được:
\(3.\left(-3\right)+1< -3+3\)\(\Leftrightarrow-8< 0\) ( đúng)
Vậy \(x=-3\) là nghiệm của bất phương trình (1)
TThay \(x=-3\) vào bất phương trình (2) ta được:
\(\left(3.\left(-3\right)+1\right)^2< \left(-3+3\right)^2\)\(\Leftrightarrow64< 0\) (vô lý).
Vậy \(x=-3\) là nghiệm của bất phương trình (2).
Vậy hai bất phương trình (1) và (2) không tương đương và bình phương hai vế của bất phương trình không là phép biến đổi tương đương.
\(\sqrt{x-1}+\sqrt{5-x}=t\Rightarrow t^2=4+2\sqrt{\left(5-x\right)\left(x-1\right)}\)
\(\Rightarrow\sqrt{\left(5-x\right)\left(x-1\right)}=\frac{t^2-4}{2}\)
\(\Rightarrow t+\frac{1}{2}t^2-2\ge m\)
\(\Rightarrow\left\{{}\begin{matrix}t\ge0\\t=\sqrt{x-1}+\sqrt{5-x}\le\sqrt{\left(x-1+5-x\right)\left(1+1\right)}=2\sqrt{2}\end{matrix}\right.\)
Bất phương trình trở thành:
Tìm giá trị lớn nhất của m để \(f\left(t\right)=\frac{1}{2}t^2+t-2\ge m\) có nghiệm đúng với \(\forall t\in\left[0;2\sqrt{2}\right]\)
\(\Leftrightarrow m\le max_{\left[0;2\sqrt{2}\right]}f\left(t\right)\)
Xét hàm \(f\left(t\right)=\frac{1}{2}t^2+t-2\) trên \(\left[0;2\sqrt{2}\right]\)
Do \(-\frac{b}{2a}=-1\notin\left[0;2\sqrt{2}\right]\) nên cực trị rơi vào 2 đầu mút
\(f\left(0\right)=-2;f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)
\(\Rightarrow max_{\left[0;2\sqrt{2}\right]}f\left(t\right)=f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)
\(\Rightarrow m\le2+2\sqrt{2}\Rightarrow m_{max}=2+2\sqrt{2}\)
ĐKXĐ: \(x\left(x+1\right)\left(x-3\right)\ge0\Rightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge3\end{matrix}\right.\)
\(\left(x-2\right)\sqrt{x\left(x+1\right)\left(x-3\right)}\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2\le0\\\sqrt{x\left(x+1\right)\left(x-3\right)}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le2\\x=-1\\x=0\\x=3\end{matrix}\right.\)
Kết hợp với ĐKXĐ ta được: \(\left[{}\begin{matrix}-1\le x\le0\\x=3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x_1=-1\\x_2=3\end{matrix}\right.\) \(\Rightarrow S=5\)