Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Sử dụng phương pháp xác định tâm mặt cầu ngoại tiếp khối chóp.
Cách giải: Đặt A(x;0;0), B(0;y;0), (x,y>0)
Vì OA+OB=OC = 1 => x+y=1
Gọi J, F lần lượt là trung điểm AB, OC. Kẻ đường thẳng qua F song song OJ, đường thẳng qua J song song OC, 2 đường thẳng này cắt nhau tại G
Tam giác OAB vuông tại O => J là tâm đường tròn ngoại tiếp tam giác
mà F là trung điểm của OC
=>GF là đường trung trực của OC => GC=GO
=> GO=GA=GB=GC=> G là tâm mặt cầu ngoại tiếp tứ diện OABC.
Bán kính mặt cầu ngoại tiếp tứ diện OABC
Ta có:
Đáp án C
Phương pháp
+) Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c ≠ 0) viết phương trình mặt phẳng (P) đi qua A, B, C dạng đoạn chắn.M ∈ (P)=> Thay tọa độ điểm M vào phương trình mặt phẳng (P).
+) Ứng với mỗi trường hợp tìm các ẩn a, b, c tương ứng
Cách giải
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c ≠ 0) khi đó phương trình mặt phẳng đi qua A, B, C là
TH1: a=b=c thay vào (*) có
TH2: a=b=-c thay vào (*) có
TH3: a=-b=c thay vào (*) có
TH4: a=-b=-c thay vào (*) có
Vậy có 4 mặt phẳng thỏa mãn.
Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)
Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)
Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Ta có: \(S=OA+OB+OC=a+b+c\)
Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)
Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)
\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)
\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)
Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)
Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)
Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.
- Tam giác OBC vuông ở O và có đường cao OE nên:
1 O E 2 = 1 O B 2 + 1 O C 2 5
- Tam giác AOE vuông ở O và có đường cao OH nên:
1 O H = 1 O A 2 + 1 O E 2
Từ (5) và (6) suy ra
Đáp án B
Vì DA, DB,DC đôi 1 vuông góc, D khác O suy ra D đối xứng với O qua mp (ABC)
Mp (ABC) có dạng x+y+z+2=0
Suy ra D
Trung điểm K (0;-1;-1) của BC
suy ra đường thẳng đi qua K và song song với AD có (d1)
Trung điểm P của AD
suy ra đường thẳng đi qua P và song song với DK có ptđt (d2)
Tâm I là giao của d 1 , d 2 suy ra I suy ra S=a+b+c=-1
Chọn D
Tứ diện OABC có ba cạnh đôi một vuông góc không phải là hình chóp đều.