Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử
Tứ diện OABC có OA, OB, OC đôi một vuông góc.
Gọi M, N lần lượt là trung điểm của AB và OC.
Ta có
Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng song song với OM. Hai đường thẳng này cắt nhau tại I.
∆ O A B vuông tại O ⇒ M là tâm đường tròn ngoại tiếp ∆ O A B ⇒ I A = I B = I O .
I là tâm mặt cầu ngoại tiếp O.ABC
Ta có
Chọn A.
Đáp án D
Gọi M,N lần lượt là trung điểm của BC và OA
Gọi (P) là mặt phẳng trung trực của OA: z - 3 =0
Goi I là tâm mặt cầu ngoại tiếp tứ diện => I = P ∩ d ⇒ I 3 ; 3 ; 3 R = I A = 3 3
Đáp án D
Gọi M,N lần lượt là trung điểm của BC và OA
O ( 0 ; 0 ; 0 ) , B ( 6 ; 0 ; 0 ) , C ( 0 ; 6 ; 0 ) , A ( 0 ; 0 ; 6 ) ; M ( 3 ; 3 ; 0 ) , N ( 0 ; 0 ; 3 ) O B → ( 6 ; 0 ; 0 ) , O C → ( 0 ; 6 ; 0 ) ⇒ u d → = [ O B → , O C → ] = ( 0 ; 0 ; 36 ) ⇒ d : x = 3 y = 3 z = t
Gọi (P) là mặt phẳng trung trực của OA: z - 3 = 0
Goi I là tâm mặt cầu ngoại tiếp tứ diện
Đáp án D
Gọi D, K lần lượt là trung điểm của AB, OC.
Từ D kẻ đường thẳng vuông góc với mặt phẳng O A B và cắt mặt phẳng trung trực OC tại I x 1 ; y 1 ; z 1 suy ra I là tâm mặt cầu ngoại tiếp tứ diện OABC và z 1 = c 2 (do DOKI là hình chữ nhật).
Tương tự D F = a 2 ⇒ x 1 = a 2 ; y 1 = b 2 ⇒ I a 2 ; b 2 ; c 2 .
Suy ra x 1 + y 1 + z 1 = a + b + c 2 = 1 ⇒ I ∈ P : x + y + z − 1 = 0 .
Vậy khoảng cách từ điểm M đến (P) là d = 2015 3 .
Đáp án C
Phương pháp: Sử dụng phương pháp xác định tâm mặt cầu ngoại tiếp khối chóp.
Cách giải: Đặt A(x;0;0), B(0;y;0), (x,y > 0)
Vì OA + OB = OC = 1 => x + y = 1
Gọi J, F lần lượt là trung điểm AB, OC. Kẻ đường thẳng qua F song song OJ, đường thẳng qua J song song OC, 2 đường thẳng này cắt nhau tại G.
∆OAB vuông tại O => J là tâm đường tròn ngoại tiếp tam giác.
GJ // OC => GJ ⊥ (OAB) => GO = GA = GB
GF // JO, JO ⊥ OC => GF ⊥ OC, mà F là trung điểm của OC
=>GF là đường trung trực của OC => GC = GO
=> GO = GA = GB = GC => G là tâm mặt cầu ngoại tiếp tứ diện OABC
Bán kính mặt cầu ngoại tiếp tứ diện OABC :
Ta có: