Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay xyz = 2011 vào N được :
\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)
\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
Vì xyz=1 nên \(x\ne0;y\ne0;z\ne0\)
Ta có \(\frac{1}{1+x+xy}=\frac{z}{\left(1+y+yz\right)xz}=\frac{xz}{z+xz+1}\)
Tương tự \(\frac{1}{1+y+yz}=\frac{xz}{\left(1+y+yz\right)xz}=\frac{xz}{xz+z+1}\)
Khi đó \(M=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}=\frac{z+xz+1}{z+zx+1}=1\)
Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )
xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )
Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )
\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)
\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)
\(M=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{y}{y+yz+xyz}\)
\(M=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{y+yz+1}\)
\(M=\frac{yz+y+1}{1+y+yz}\)
Tham khảo nhé~