\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\). Tính <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

23 tháng 1 2017

Bài 2: Cho x/y=y/z=z/x

+ Trường hợp 1: x/y=y/z=z/x=0

=> x = y= z = 0

=> z^576  =0

=> Không thoả mãn phân số

+ Trường hợp 2: x;y;z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau có:

x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1

=> x = y = z

=> x^123 . y^456 = z^579

=> Phân số có giá trị = 1

k cho tớ nha!!!

23 tháng 1 2017

Bài 1 bạn sửa lại dấu ngoặc được không? Tớ không hiểu. @+@

11 tháng 3 2016

Theo t/c dãy tỉ số=nhau;

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

Vậy....

4 tháng 8 2016

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1

=> N = x^( 123 + 456) = x^579

=> N = x^579 / 2^579

8 tháng 1 2017

Công hết lại=> x=y=z

670+670+672=2012

\(M=1\)

30 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

30 tháng 12 2016

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)

\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)

\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)

Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z

Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)

25 tháng 10 2019

Hình như

25 tháng 10 2019

Ap dụng tính chất tỉ lệ thức ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Nên ta có

\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)

\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)

\(1+\frac{z}{x}=\frac{2y}{x}\)

Chỗ này mình làm hơi tắt nên tự hiệu nhé

\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)