K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ba số tự nhiên \(m,n,p\) theo thứ tự lập thành cấp số cộng nên ta có: \(2n = m + p\).

Ta có: \(2n = m + p \Leftrightarrow {2^{2n}} = {2^{m + p}} \Leftrightarrow {\left( {{2^n}} \right)^2} = {2^m}{.2^p}\).

Vậy ba số \({2^m},{2^n},{2^p}\) theo thứ tự lập thành cấp số nhân.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng nên ta có:

\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b} \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).

Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.

25 tháng 10 2023

5x-y;2x+1;x-y lập thành cấp số cộng nên 

5x-y+x-y=2(2x+1)

=>6x-2y=4x+2

=>2x-2y=2

=>x-y=1

=>y=x-1

\(3;\sqrt{2x+y};x+1\) lập thành cấp số nhân thì \(\left(\sqrt{2x+y}\right)^2=3\left(x+1\right)\)

=>\(2x+y=3x+3\) hoặc -2x-y=3x+3

=>2x+x-1=3x+3 hoặc -2x-x+1=3x+3

=>-1=3(loại) hoặc -3x+1=3x+3

=>-6x=2

=>x=-1/3

=>y=-1/3-1=-4/3

Thử lại, ta sẽ thấy: 2x+y=-2/3-4/3=-6/3=-2<0

=>\(\sqrt{2x+y}\) không có giá trị

Vậy: Không có cặp số (x,y) nào thỏa mãn đề bài

18 tháng 3 2017

Đáp án D

4 tháng 1 2021

gọi a,b,c là 3 cạnh của tam giác.

Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)

<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)

<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)

<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)

<=> a+c =2b

=> 3 cạnh của tam giác tạo thành cấp số cộng.

4 tháng 1 2021

Em cảm ơn chị

28 tháng 2 2017

Chọn A.

Phương pháp:

Ba số x, y, z lập thành một cấp số cộng

⇔ x + z - 2 y

Và số x, y, z lập thành một cấp số nhân  ⇔ x z = y 2

Cách giải

Do 3 số x, y, z lập thành một cấp số cộng và có tổng bằng 21 nên ta có

x + z = 2 y x + y + z = 21

⇔ x + z = 14 y = 7

⇔ x = 14 - z y = 7 ( 1 )

Nếu lần lượt thêm các số 2; 3; 9 vào ba số đó (theo thứ tự của cấp số cộng)

thì được ba số lập thành một cấp số nhân nên ta có

( x + 2 ) ( z + 9 ) = ( y + 3 ) 2 ( 2 )

Thay (1) vào (2) ta có:

( 14 - z + 2 ) ( z + 9 ) = ( 7 + 3 ) 2

⇔ z 2 - 7 z - 44 = 0

⇔ z = 11 z = - 4

z = 11 ⇒ z = 14 - 11 = 3

⇒ F = x 2 + y 2 + z 2 = 179

z = - 4 ⇒ x = 14 - ( - 4 ) = 18

⇒ F = x 2 + y 2 + z 2 = 389

24 tháng 6 2019

Chọn C

*Theo tính chất của cấp số cộng , ta có x+  z = 2y.

Kết hợp với giả thiết, x+ y + z = 21, ta suy ra  3y = 21 nên y =  7.

* Gọi d là công sai của cấp số cộng thì x = y − d = 7 − d  và z = y + d = 7 + d .

Sau khi thêm các số 2 ; 3 ; 9 vào ba số x ; y ; z ta được ba số là x+ 2 ; y + 3 ; z + 9 hay

9- d ;  10 ; 16+ d.

 * Theo tính chất của cấp số nhân, ta có

9 − d 16 + d = 10 2 ⇔ d 2 + 7 d − 44 = 0

Giải phương trình ta được d= -11 hoặc d= 4.

   Với d = -11 ; cấp số cộng 18 ; 7 ; - 4. Lúc này F = 389.

   Với d= 4, cấp số cộng 3 ; 7 ; 11. Lúc này F = 179.

13 tháng 1 2017

Chọn B.

Ta có a; b; c  theo thứ tự lập thành cấp số cộng khi và chỉ khi a + c = 2b

Suy ra -2( b + c) = -2.2a hay -2b + (-2c) = 2.(-2a)

-2a; -2b; -2c lập thành một cấp số cộng.

NV
27 tháng 1 2021

Do 3 số lập thành 1 CSC nên: \(2\left(a+8\right)=1+b\Rightarrow b=2a+15\)

Do 3 số lập thành 1 CSN nên: 

\(a^2=b.1\Leftrightarrow a^2=2a+15\)

\(\Leftrightarrow a^2-2a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\b=-3< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow b=2a+15=25\)