Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Từ 3 x = 4 x = 12 − x x = log 3 a y = log 4 a z = − log 12 a ⇒ P = log 3 a log 4 a − log 4 a log 12 a − log 12 a log 3 a
1
log
a
3
log
a
4
−
1
log
a
4
log
a
12
−
1
log
a
12
log
a
3
=
log
a
12
−
log
a
3
−
log
a
4
log
a
3
log
a
4
log
a
12
=
log
a
1
log
a
3
log
a
4
log
a
12
=
0
Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21 chỉ có 1 nghiệm duy nhất
Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt
⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 , P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17
Đáp án D
Phương pháp: Chuyến sang hệ trục tọa độ trong không gian.
Cách giải:
Lấy bất kì, M(1;1;1), N(2;1;0)
Ta thấy N nằm khác phía so với mặt phẳng
Khi đó, S là giao điểm của MN và (P).
*) Xác định tọa độ của S:
Phương trình đường thẳng MN:
Vậy, biểu thức A đạt GTNN tại