Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM ta có :
\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)
\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)
\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)
\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Chúc bạn học tốt !!!
Từ GT ta có: \(3=\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Suy ra \(3\le x+y+z\)
Áp dụng AM-GM:
\(VT\le\dfrac{x^2}{2x^2\sqrt{yz}}+\dfrac{y^2}{2y^2\sqrt{xz}}+\dfrac{z^2}{2z^2\sqrt{xy}}=\dfrac{1}{2}\sum\dfrac{1}{\sqrt{xy}}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2\sqrt{xyz}}\le\dfrac{\sqrt{3\left(x+y+z\right)}}{2\sqrt{xyz}}\le\dfrac{1}{2}\sqrt{\dfrac{\left(x+y+z\right)^2}{xyz}}\)
\(\le\dfrac{1}{2}\sqrt{\dfrac{3\left(x^2+y^2+z^2\right)}{xyz}}=\dfrac{3}{2}\)
Vậy \(P_{Max}=\dfrac{3}{2}\)
ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại rồi cộng lại :
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) khi đó
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
from giả thiết => x+y+z=xyz
biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
mình nhầm :) làm lại nhé
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)
Lời giải:
\(P=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)
Xét
\((x^2y^2+y^2z^2+z^2x^2)^2=x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\) (1)
Áp dụng BĐT AM-GM:
\(x^4y^4+y^4z^4\geq 2x^2y^4z^2\)
\(y^4z^4+z^4x^4\geq 2x^2y^2z^4\)
\(x^4y^4+z^4x^4\geq 2x^4y^2z^2\)
Cộng theo vế: \(\Rightarrow 2(x^4y^4+y^4z^4+z^4x^4)\geq 2x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\) (2)
Từ \((1);(2)\Rightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 6048x^2y^2z^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt{42}xyz\)
\(\Leftrightarrow P=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq 12\sqrt{42}\)
Vậy \(P_{\min}=12\sqrt{42}\Leftrightarrow x=y=z=4\sqrt{42}\)
Áp dung BĐT AM-GM ta có
\(P=\dfrac{x^2}{x^4+yz}+\dfrac{y^2}{y^4+xz}+\dfrac{z^2}{z^4+xy}\)
\(\le\dfrac{x^2}{2x^2\sqrt{yz}}+\dfrac{y^2}{2y^2\sqrt{xz}}+\dfrac{z^2}{2z^2\sqrt{xy}}\)
\(=\dfrac{1}{2\sqrt{yz}}+\dfrac{1}{2\sqrt{xz}}+\dfrac{1}{2\sqrt{xy}}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{2}\cdot\dfrac{xy+yz+xz}{xyz}\)
\(\le\dfrac{1}{2}\cdot\dfrac{x^2+y^2+z^2}{xyz}\le\dfrac{1}{2}\cdot\dfrac{3xyz}{xyz}=\dfrac{3}{2}\)
Dấu "=" <=> \(x=y=z=1\)