K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}=\frac{\sqrt{\left(a-1\right)\cdot1}}{a}+\frac{1}{2}\cdot\frac{\sqrt{\left(b-4\right)\cdot4}}{b}+\frac{1}{3}\cdot\frac{\sqrt{\left(c-9\right)\cdot9}}{c}\)

\(\Rightarrow P\le\frac{\frac{a-1+1}{2}}{a}+\frac{1}{2}\cdot\frac{\frac{b-4+4}{2}}{b}+\frac{1}{3}\cdot\frac{\frac{c-9+9}{2}}{c}\)

\(\Rightarrow P\le\frac{a}{2a}+\frac{b}{4b}+\frac{c}{6c}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=18\end{matrix}\right.\)

18 tháng 12 2018

Xét a=1,b=4,c=9 thì P=0

Xét \(a>1,b>4,c>9\)

Áp dụng BĐT AM-GM ta có:

\(P=\frac{bc.\sqrt{a-1}.1+\frac{ca}{2}.\sqrt{b-4}.2+\frac{ab}{3}.\sqrt{c-9}.3}{abc}\)

\(\le\frac{bc.\frac{a-1+1}{2}+\frac{ca}{2}.\frac{b-4+4}{2}+\frac{ab}{3}.\frac{c-9+9}{2}}{abc}\)

\(=\frac{\frac{abc}{2}+\frac{abc}{4}+\frac{abc}{6}}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)

Nên GTLN của P là \(\frac{11}{12}\) đạt được khi \(\hept{\begin{cases}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a-1=1\\b-4=4\\c-9=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=8\\c=18\end{cases}}\)

1 tháng 7 2020

\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)

Vì \(a\ge1;b\ge4;c\ge9\). Áp dụng BĐT Cosi cho các số dương ta được:

\(\sqrt{a-1}=1\cdot\sqrt{a-1}\le\frac{1+a-1}{2}=\frac{a}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{a-1}=1\Leftrightarrow a=2\)

\(\sqrt{b-4}=2\cdot\sqrt{b-4}\le\frac{4+b-4}{2}=\frac{b}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{b-4}=2\Leftrightarrow b=8\)

\(\sqrt{c-9}=3\cdot\sqrt{c-9}\le\frac{9+c-9}{2}=\frac{c}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{c-9}=3\Leftrightarrow c=18\)

\(\Rightarrow P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)

Vậy GTLN của P\(=\frac{3}{2}\Leftrightarrow a=2;b=8;c=18\)

7 tháng 1 2021

Áp dụng bất đẳng thức Cô-si, ta được: \(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)\(=\frac{bc\sqrt{\left(a-1\right).1}+\frac{1}{2}ca\sqrt{4.\left(b-4\right)}+\frac{1}{3}ab\sqrt{9.\left(c-9\right)}}{abc}\)\(\le\frac{bc.\frac{\left(a-1\right)+1}{2}+\frac{1}{2}ca.\frac{4+\left(b-4\right)}{2}+\frac{1}{3}ab.\frac{9+\left(c-9\right)}{2}}{abc}\)\(=\frac{\frac{1}{2}abc+\frac{1}{4}abc+\frac{1}{6}abc}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)

Đẳng thức xảy ra khi a = 2; b = 8; c = 18

18 tháng 10 2019

Ta có:

\(bc\sqrt{1\left(a-1\right)}\le bc.\frac{1+a-1}{2}=\frac{abc}{2}\)

\(ca\sqrt{b-4}=\frac{1}{2}ca\sqrt{4\left(b-4\right)}\le\frac{1}{2}ca.\frac{4+b-4}{2}=\frac{abc}{4}\)

\(ab\sqrt{c-9}=\frac{1}{3}ab.\sqrt{9\left(c-9\right)}\le\frac{1}{3}ab.\frac{9+c-9}{2}=\frac{abc}{6}\)

Từ đó suy ra \(P\le\frac{abc\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right)}{abc}=\frac{11}{12}\)

Đẳng thức xảy ra khi a = 2; b = 8; c = 18

Is that true?

18 tháng 10 2019

True not false

25 tháng 5 2018

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

24 tháng 8 2020

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 1 2020

tham khảo

https://olm.vn/hoi-dap/detail/106887527253.html

NV
22 tháng 3 2021

Ta có:

\(\dfrac{P}{1152}=\dfrac{bc\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}}{1152}=\dfrac{bc\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}}{abc}\)

\(\Leftrightarrow\dfrac{P}{1152}=\dfrac{1.\sqrt{a-1}}{a}+\dfrac{3.\sqrt{b-9}}{3b}+\dfrac{4\sqrt{c-16}}{4c}\)

\(\Rightarrow\dfrac{P}{1152}\le\dfrac{1+a-1}{2a}+\dfrac{9+b-9}{6b}+\dfrac{16+c-16}{8c}=\dfrac{19}{24}\)

\(\Rightarrow P\le912\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;18;36\right)\)

NV
22 tháng 3 2021

Chắc chắn rằng đề bài thiếu, biểu thức này ko tồn tại max

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24