Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp
Đây là dề thi HSG toán cấp tỉnh Đồng Tháp
Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)
\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)
Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc
\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ
Vậy
Câu số 1b đề thi hsg
Chào anh từ huyện Cao Lãnh

Bạn tham khảo tại đây nhé :
https://olm.vn/hoi-dap/tim-kiem?id=663631&subject=1&q=ch%E1%BB%A9ng+minh:1/(x-y)%5E2+1/(y-z)%5E2+1/(z-x)%5E2+l%C3%A0+b%C3%ACnh+ph%C6%B0%C6%A1ng+c%E1%BB%A7a+m%E1%BB%99t+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89
\(\left\{{}\begin{matrix}x-y=a\\y-z=b\\z-x=c\end{matrix}\right.\Leftrightarrow a+b+c=0\)
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}=\dfrac{\left(ab+bc+ac\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)
\(=\left(\dfrac{ab+bc+ac}{abc}\right)^2=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) là bp 1 số hữu tỉ(đpcm)

BĐT cần chứng minh tương đương
\(VT\ge4\left(x+y+z\right)\)
\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Theo BĐT Cauchy-Schwarz và AM-GM, ta có:
\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)
Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)
Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)
\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
@Phương An

Câu 1:
\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)
Câu 2:
\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)
\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b) Áp dụng bất đảng thức ở câu a:
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow18< S< 20\)

\(\dfrac{1}{\left[\left(x+z\right)-\left(y+z\right)\right]^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)
\(\Leftrightarrow\dfrac{1}{\left(x+z\right)^2+\left(y+z\right)^2-2}+\dfrac{\left(x+z\right)^2+\left(y+z\right)^2-2}{1}\ge2\)
(AM-GM)

\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)=4\)
mà \(x+y+z=2\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)----->thay vào
Bạn có thể giải rõ ràng hơn được không? Mình cũng tự làm được đến đoạn này rồi nhưng k biết thay ntn?????
Ta có:
\(\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)^2=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}+2\left(\dfrac{x-y+y-z+z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\right)=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}\)
Vậy: \(\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}=\sqrt{\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)^2}=\)
$=/$\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}$/ ($dpcm$)