Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow a-b=b-c=-\dfrac{1}{2}\left(c-a\right)\)
\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=4\left(-\dfrac{1}{2}\left(c-a\right)\right)\left(-\dfrac{1}{2}\left(c-a\right)\right)-\left(c-a\right)^2\)
\(\Rightarrow M=\left(c-a\right)^2-\left(c-a\right)^2=0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{2015-2016}=\dfrac{b-c}{2016-2017}=\dfrac{c-a}{2015-2017}\\ \Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}\\\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}=k\\ \Rightarrow a-b=-k;b-c=-k ;c-a=-2k\\ 4\left(a-b\right)\left(b-c\right)=4\left(-k\right)\left(-k\right)=4k^2\\ \left(c-a\right)^2=\left(-2k\right)^2=4k^2\\ \Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(ĐPCM\right)\)
Đặt a/2016=b/2017=c/2018=k
=>a=2016k; b=2017k; c=2018k
M=4(a-b)(b-c)(c-a)^2
=4*(2016k-2017k)(2017k-2018k)(2016k-2018k)^2
=4*(-k)*(-k)*(-2k)^2
=4k^2*4k^2=16k^4
Câu 2: A = \(^{1+2+2^2+2^{ }^3+...+2^{2017}}\)
2A = \(2+2^2+2^3+...+2^{2018}\)
Suy ra 2A - A =\(2^{2018}-1\) Do đó A < B
1. Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\Rightarrow a=2016t,b=2017t,c=2018t\)
\(\left(a-c\right)^3=\left(2016t-2018t\right)^3=\left(-2t\right)^3=-8t^3\)
\(8\left(a-b\right)^2\left(b-c\right)=8\left(2016t-2017t\right)^2\left(2017t-2018t\right)=8.\left(-t\right)^2.\left(-t\right)=-8t^3\)
Vậy \(\left(a-c\right)^3=8\left(a-b\right)^2\left(b-c\right)\)
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
Đặt a/2016 = b/2017 = c/2018 = k => a=2016k
b=2017k
c=2018k
Ta có (a-c)^3=( 2016k-2018k)^3 = (k(2016-2018))^3 = (k(-2))^3 (1)
Ta lại có 8(a-b)^2*(b-c)= 8(2016k-2017k)^2*(2017k-2018k) = 8(k(2016-2017)^2*(k(2017-2018) = 2^3*(k(-1))^2*(k(-1)) = 2^3*k^2*1*k*(-1) = k^3*(-2)^3 = (k(-2))^3 (2)
Từ (1) và (2) suy ra (a-c0^3 = 8(a-b)^2*(b-c)
Nhớ tick mik nha
cảm ơn bạn nha