\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{ac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ac+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

4 tháng 5 2016

Vậy để mình giúp  haha

4 tháng 5 2016

Phải là \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+bc+1}=1\) thì mới làm đc bạn à 

5 tháng 6 2015

1/1+a+ab  +1/1+b+bc  +1/1+c+ac

=1/a+1+ab  +a/a+ab+abc  +ab/ab+abc+acab

=1/a+1+ab  +a/a+ab+1  +ab/ab+1+a

=1+a+ab/1+a+ab

=1

vậy 1/a+1+ab  +1/1+b+bc  +1/1+c+ca =1(đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Lời giải:
Dựa vào điều kiện $abc=1$ ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)

Ta có đpcm.

9 tháng 11 2019

Ta có: \(a.b.c=1\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)

\(=\frac{1+ab+a}{1+ab+a}\)

\(=1.\)

\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)

Chúc bạn học tốt!