Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm vô đây đài nhưng làm trog giấy ngắn lắm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
Tk mk nha
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
Lời giải:
\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
1
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)
=> M ko là số tự nhiên
2
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)
3
\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)
\(\Rightarrow35x+35y=2010x-2010y\)
\(\Rightarrow35-2010x=2010y-35y\)
\(\Rightarrow-175x=-245y\)
\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\)
\(\Rightarrow x=7k;y=5k\)
\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)
\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)
Vậy \(x=7;y=5\)
bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*
Ta có :
\(\frac{\left(b-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{\left(b-a+a-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{\left(b-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(=\frac{1}{\left(a-b\right)}+\frac{1}{\left(c-a\right)}\)
Tương tự
\(\frac{\left(c-a\right)}{\left(b-c\right)\left(b-a\right)}\)
\(=\frac{1}{\left(b-c\right)}+\frac{1}{\left(a-b\right)}\)
\(\frac{\left(a-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{\left(c-a\right)}+\frac{1}{\left(b-c\right)}\)
Cộng theo vế các dẳng thức trên đựoc ĐPCM
Lam tat the ma anh van hieu