\(\frac{ab}{a+b}\)=\(\frac{bc}{b+c}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Ta có \(a=\frac{2015b}{2016};c=\frac{2017b}{2016}\)

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

   \(=4\left(\frac{2015b}{2016}-b\right)\left(b-\frac{2017b}{2016}\right)-\left(\frac{2017b}{2016}-\frac{2015b}{2016}\right)^2\)

   \(=4\left(-\frac{1b}{2016}\right)\left(-\frac{1b}{2016}\right)-\left(\frac{2b}{2016}\right)^2\)

    \(=2^2\left(\frac{1b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=\left(\frac{2b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=0\)

18 tháng 10 2017

thay a=b=c=0 vào B ta được B=0 vậy ta sẽ chứng minh B=0

Đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)

suy ra

\(\hept{\begin{cases}a=2015k\\b=2016k\\c=2017k\end{cases}}\)

vậy

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(B=4\left(2015k-2016k\right)\left(2016k-2017k\right)-\left(2017k-2015k\right)^2\)

\(B=4\left(-k\right)\left(-k\right)-\left(2k\right)^2\)

\(B=4k^2-4k^2\)

\(B=0\)

21 tháng 12 2017

Tớ ko bt

30 tháng 3 2018

Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)

Thay (1) vào M ta có :

M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2

=>M=4.-k.-k-4k2

=>M=4k2-4k2=0

Vậy M = 0

23 tháng 10 2018

Bài 3:

Ta có:\(|\frac{a}{2}-\frac{b}{3}|+|\frac{b}{4}-\frac{c}{3}|+|a+b+c-58|=0.\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{2}-\frac{b}{3}=0\\\frac{b}{4}-\frac{c}{3}=0\\a+b+c-58=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{3}\\a+b+c=58\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\\a+b+c=58\end{cases}}}\)

\(\Leftrightarrow\frac{a+b+c}{8+12+9}=\frac{58}{29}=2\)

=> a/8=2 Vậy a=16

=> b/12=2 Vậy b=24

=> c/9=2 Vậy c=18

10 tháng 3 2018

Ta có : 

Thay \(a+b+c=2016\) vào A ta có : 

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(A>1\)\(\left(1\right)\)

Lại có : 

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< A< 2\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~

10 tháng 3 2018

Ta có:

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

tự làm tiếp nhé!
 

24 tháng 11 2016

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

  • nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

  • nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

26 tháng 11 2016

thanks you :)