Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz
\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
Và
\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)
\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)
\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)
Mà \(3\le a+b+c\left(cmt\right)\)
\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)
\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)
Ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=1\)
Đặt \(x=\sqrt{\frac{b}{a}};y=\sqrt{\frac{c}{b}};z=\sqrt{\frac{a}{c}}\) thì \(xyz=1\) và BĐT cần chứng minh là
\(\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}+\sqrt{\frac{2}{z^2+1}}\le3\)
Giả sử \(x\le y\le z\Rightarrow\hept{\begin{cases}xy\le1\\z\ge1\end{cases}}\) ta có:
\(\left(\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}\right)^2\le2\left(\frac{2}{x^2+1}+\frac{2}{y^2+1}\right)\)
\(=4\left[1+\frac{1-x^2y^2}{\left(x^2+1\right)\left(y^2+1\right)}\right]\)
\(\le4\left[1+\frac{1-x^2y^2}{\left(xy+1\right)^2}\right]=\frac{8}{xy+1}=\frac{8z}{z+1}\)
\(\Rightarrow\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}\le2\sqrt{\frac{2z}{z+1}}\)
Nên còn phải chứng minh \(2\sqrt{\frac{2z}{z+1}}+\frac{2}{z+1}\le3\)
\(\Leftrightarrow1+3z-2\sqrt{2z\left(z+1\right)}\ge0\Leftrightarrow\left(\sqrt{2z}-\sqrt{z+1}\right)^2\ge0\)
BĐT cuối đúng hay ta có ĐPCM
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
với mọi x,y,z >0 ta có: \(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
đẳng thức xảy ra khi x=y=z
ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
đẳng thức xảy ra khi a=b
tương tự: \(\frac{1}{\sqrt{5b^2+2ab+2b^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
đẳng thức xảy ra khi b=c
\(\frac{1}{\sqrt{5c^2+2bc+2c^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
đẳng thức xảy ra khi c=a
Vậy \(\frac{1}{\sqrt{5a^2+2ca+2a^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
đẳng thức xảy ra khi a=b=c=\(\frac{3}{2}\)
3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)
Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)
Cộng vế với vế các bất đẳng thức cùng chiều ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )
dấu " = " xẩy ra khi a = b = c > 0
Bất đẳng thức cần chứng minh tương đương \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le2.\sqrt{2}.\sqrt[3]{9}\)
Ta quy bài toán về chứng minh hai bất đẳng thức sau
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\sqrt{2}\)và \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)
Áp dụng bất đẳng thức Bunyakovsky ta được \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)\(\le\sqrt{6\sqrt{3\left(a^4+b^4+c^4\right)}}\le3\sqrt{2}\)
Mặt khác ta lại có \(\left[\left(x^3+y^3+z^3\right)\left(x+y+z\right)\right]^2\ge\left(x^2+y^2+z^2\right)^4\); \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Do đó ta được \(\left(x^3+y^3+z^3\right)^2\ge\frac{\left(x^2+y^2+z^2\right)^3}{3}\)
Áp dụng kết quả trên ta thu được \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right]^3\)
Mà theo bất đẳng thức Cauchy-Schwarz ta có\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{2\left(a^2+b^2\right)}+\frac{1}{2\left(b^2+c^2\right)}+\frac{1}{2\left(c^2+a^2\right)}\) \(\ge\frac{9}{4\left(a^2+b^2+c^2\right)}\ge\frac{9}{4\sqrt{3\left(a^4+b^4+c^4\right)}}\ge\frac{9}{4\sqrt{9}}=\frac{3}{4}\)
Do đó ta có \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{3}{4}\right]^3=\frac{9}{64}\)
Suy ra \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)
Từ các kết quả trên ta được \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{3\sqrt{2}}{\frac{\sqrt[3]{3}}{2}}=2.\sqrt{2}.\sqrt[3]{9}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.
Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))
Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
(Dấu "=" xảy ra khi a = b)
Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)
\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))
Ta có: \(3\ge a+b+c\Leftrightarrow9\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\ge ab+bc+ca\)
Khi đó:
\(A=\Sigma\left(\frac{bc}{\sqrt{a^2+3}}\right)\le\Sigma\left(\frac{bc}{\sqrt{a^2+ab+bc+ca}}\right)=\Sigma\left(\frac{bc}{\sqrt{\left(a+b\right)\left(c+a\right)}}\right)=\Sigma\left(\sqrt{\frac{bc}{a+b}\cdot\frac{bc}{c+a}}\right)\)
\(\le\Sigma\left[\frac{1}{2}\cdot\left(\frac{bc}{a+b}+\frac{bc}{c+a}\right)\right]=\frac{1}{2}\cdot\left(\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{b+a}+\frac{ca}{b+c}+\frac{ab}{b+c}+\frac{ab}{c+a}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{c\left(a+b\right)}{a+b}+\frac{b\left(c+a\right)}{c+a}+\frac{a\left(b+c\right)}{b+c}\right)=\frac{1}{2}\cdot\left(a+b+c\right)\le\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có:
\(a^3+1+1+b^3+1+1+c^3+1+1\ge3\left(a+b+c\right)\)
\(\Rightarrow3\left(a+b+c\right)\le a^3+b^3+c^3+6\le9\)
\(\Rightarrow a+b+c\le3\)
\(\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\le3\)
Quay lại bài toán ta có:
\(\left(\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\right)^2\le\left(ab+bc+ca\right)\left(\frac{ab}{c+3}+\frac{bc}{a+3}+\frac{ca}{b+3}\right)\)
\(\le3.\left(\frac{ab}{c+3}+\frac{bc}{a+3}+\frac{ca}{b+3}\right)\)
\(\le3.\left(\frac{ab}{c+a+c+b}+\frac{bc}{a+b+a+c}+\frac{ca}{b+a+b+c}\right)\)
\(\le\frac{3}{4}.\left(\frac{ab}{c+a}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)
\(=\frac{3}{4}.\left(\frac{ca}{a+b}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ab}{c+a}+\frac{ca}{b+c}+\frac{ab}{b+c}\right)\)
\(=\frac{3}{4}.\left(a+b+c\right)\le\frac{9}{4}\)
\(\Rightarrow\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\le\frac{3}{2}\)
\(\Rightarrow\frac{2ab}{\sqrt{c+3}}+\frac{2bc}{\sqrt{a+3}}+\frac{2ca}{\sqrt{b+3}}\le3\)
PS: Được chưa 2 cô nương Hoàng Lê Bảo Ngọc, Witch Rose.
Số t khổ quá mà. Thấy có bài giải mừng húm tưởng khỏi cần giải nữa thì vô đọc bài của bác Thắng Nguyễn thấy mệt mệt. Bác lo mà úp mặt vô tường đi :(
Cái này xấu lắm đấy nhé :v, chủ thớt muốn thì post thôi @@
*)Note:\(Σ\) là tổng đối xứng viết tắt cho gọn
\(\text{∏}\) tích đối xứng viết tắt luôn :v \(\text{∏}a=abc;Σa=a+b+c\)
\(BDT\Leftrightarrow\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\le\frac{3}{2}\)
Theo Cauchy-Schwarz và đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)
\(\left(Σ\frac{ab}{\sqrt{c+3}}\right)^2\leΣab\cdotΣ\frac{ab}{c+3}\le\frac{9}{4}\)
\(\Leftrightarrow\frac{3v^2Σab\left(a+3\right)\left(b+c\right)}{\text{∏}\left(a+3\right)}\le\frac{9}{4}\)
\(\Leftrightarrow4v^2Σ\left(a^2b^2+3a^2b+3a^2c+9ab\right)\le3\left(abc+27+Σ\left(3ab+9a\right)\right)\)
\(\Leftrightarrow4v^2\left(9v^4-6uw^3+27uv^2-9w^3+27v^2\right)\le3\left(w^3+9v^2+27+27u\right)\)
\(\Leftrightarrow w^3\left(1+12v^2+8uv^2\right)+27u+27+9v^2\ge12v^6+36uv^4+36v^4\)
A[ dụng BDT Schur có:\(w^3\ge4uv^2-3u^3\)
Nên cần cm \(\left(4uv^2-3u^3\right)\left(1+12v^2+8uv^2\right)+27u+27+9v^2\ge12v^6+36uv^4+36v^4\)
\(\Leftrightarrow32u^2v^4+12uv^4+4uv^2+9v^2+27u+27\ge12v^6+36v^4+3u^3+24u^2v^2+36u^3v^2\)
Đúng theo BĐT P-M và BĐT AM-GM
P.s: Đọc đến đây thì cho hỏi cái đề đâu ra thế, thật sự lm ko muốn dùng cách này đâu @@ hại não, hại mắt