K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)

\(\Rightarrow bc+ca+ab=0\)

\(\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ca=-bc-ab\\ab=-bc-ca\end{cases}}\)

\(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ba}\)

\(A=\frac{a^2}{a^2+bc-ac-ab}+\frac{b^2}{b^2+ca-bc-ab}+\frac{c^2}{c^2+ab-bc-ca}\)

\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

2 tháng 1 2018

Mình tiếp tục nhé

\(A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)=\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Vậy A = 1

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Lời giải:

a) Thay $a+b=-c$ ta có:

\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)

\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)

\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)

\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)

\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)

\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)

b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:

\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)

\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)

\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)

Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)

\(=2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)

Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)

cảm ơn bạn rất nhiều

 

NV
2 tháng 9 2020

\(a^2+1\ge2a\) ; \(b^2+1\ge2b\) ; \(c^2+1\ge2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2\ge\left(a+b+c\right)+\left(a+b+c\right)-3\)

\(\Rightarrow a^2+b^2+c^2\ge a+b+c+3\sqrt[3]{abc}-3=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

3 tháng 9 2020

Dạ em cảm ơn Anh ạ

1 tháng 10 2017

d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca

    => 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 = 0

=> | ( a-b)^2 = 0 => a=b     
     |  ( a-c)^2 = 0 => a=c
     |  ( b-c)^2 = 0 => b=c

=>>> a=b=c

1 tháng 10 2017

b) => 2(a-b)^2 - (a-b)^2  = 0

   2 ( a^2- 2ab + b^2) - a^2+ 2ab - b^2 = 0

  2a^2 - 4ab+ 2b^2 - a^2 + 2ab - b^2 = 0

 a^2 -2ab + b^2 =0 

( a-b)^2 = 0 => a=b

Cái này bạn nên xem lại đề có đúng ko nha~~ Mk ko lm ra số đối đc Sorry