Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a,b,c thuộc N mà a,b,c<1
\(\Rightarrow\)a=0,b=0,c=0
Vậy ....
Vào đây đi:
https://hoc24.vn/hoi-dap/question/32718.html
\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)
vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)
chúc bạn học tót ^^
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)
Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)
Cộng theo vế pt(1) với pt(2) ta được:
\(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)
Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)
Chứng minh tương tự suy ra đpcm
Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath
Câu 2:
Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)
=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc
=>9ac-9b^2=0
=>ac-b^2=0
=>ac=b^2
=>a/b=b/c
Vì: \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right).\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\) (1)
\(\left(a-1\right).\left(c-1\right)\ge0\Leftrightarrow ac-a-c+1\ge0\Leftrightarrow ac+1\ge a+c\)
\(\Leftrightarrow\dfrac{1}{ac+1}\le\dfrac{1}{a+c}\Leftrightarrow\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\) (2)
\(\left(b-1\right).\left(c-1\right)\ge0\Leftrightarrow bc-b-c+1\ge0\Leftrightarrow bc+1\ge b+c\)
\(\Leftrightarrow\dfrac{1}{bc+1}\le\dfrac{1}{b+c}\Leftrightarrow\dfrac{a}{bc+1}\le\dfrac{a}{b+c}\) (3)
Cộng vế với vế của (1)(2) và (3) ta được:
\(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ac+1}\le2\left(đpcm\right)\)