Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H I
a) Xét hai Δvuông HBC và ΔKCB
∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung
⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)
⇒ CH = BK
b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK
- Quảng cáo -
AK = AB – BK và AH = AC – CH ⇒ AK = AH
⇒ AK/AB = AH/AC ⇒ KH//BC
c) Kẻ đường cao AI của Δ ABC và xét Δ IAC
ΔHBC có ∠ACI = ∠BCH
⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b
Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)
\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)
\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)
a) Cách dựng:
- Vẽ hai tia Ox, Oy không đối nhau.
- Trên tia Oy đặt điểm B sao cho OB = 2 đơn vị.
- Lấy trung điểm của OB,
- Nối MA.
- Vẽ đường thẳng đi qua B và song song với MA cắt Ox tại C thì OCOAOCOA = OBOMOBOM; OB = 2 OM
=> xmxm = 2
b) Cách dựng:
- Vẽ hai tia Ox và Oy không đối nhau.
- Trên tia Ox đặt hai đoạn OA= 2 đơn vị, OB= 3 đơn vị.
- Trên tia Oy đặt đoạn OB' = n
- Nối BB'
- Vẽ đường thẳng qua A song song với BB' cắt Oy tại A' và OA' = x.
Ta có: AA' // BB' => OA′OB′OA′OB′ = OAOBOAOB
hay xnxn = 2323
c) Cách dựng:
- Vẽ tia Ox, Oy không đối nhau.
- Trên tia Ox đặt đoạn OA= m, OB= n.
- Trên tia Oy đặt đoạn OB' = p.
- Vẽ đường thẳng qua A và song song với BB' cắt Oy tại A' thì OA' = x.
Thật vậy: AA' // BB' => OAxOAx = OBOB′OBOB′ hay mxmx = npnp
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Theo giả thiết ABCD là hình bình hành nên ta có:
ˆDAB=ˆDCB,ˆADC=ˆABC (1)
Theo định lí tổng các góc của một tứ giác ta có:
ˆDAB+ˆDCB+ˆADC+ˆABC=360o (2)
Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o
Vì AG là tia phân giác ˆDAB (giả thiết)
⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)
Vì BG là tia phân giác ˆABC (giả thiết)
⇒⇒ ˆABG=1/2ˆABC
Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o
Xét ΔAGB= có:
ˆBAG+ˆABG=90o (3)
Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:
ˆBAG+ˆABG+ˆAGB=180o (4)
Từ (3) và (4) ⇒ˆAGB=90o
Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o
Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
Vì MD là pg nên \(\dfrac{MN}{MP}=\dfrac{ND}{DP}\Rightarrow DP=\dfrac{ND.MP}{MN}=\dfrac{32}{5}\)
Chia đoạn thẳng có độ dài m ra làm 3 đoạn bằng nhau. Lấy 2 phần trong số đó, ta được đoạn thẳng có độ h cần tìm
a)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 1 đơn vị, OB = 2 đơn vị.
+ Trên tia Oy lấy điểm M sao cho OM = m.
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại C.
Khi đó đoạn thẳng OC chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
b)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 2 đơn vị, OB = 3 đơn vị
+ Trên tia Oy lấy điểm N sao cho ON = n.
+ Vẽ đường thẳng qua A và song song với NB cắt Oy tại D.
Khi đó đoạn thẳng OD chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có:
c)
- Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = n đơn vị, OB = p đơn vị
+ Trên tia Oy lấy điểm M sao cho OM = m
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại E
Khi đó đoạn thẳng OE chính là đoạn thẳng cần dựng.
- Chứng minh:
Ta có: