Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lý pytago , ta có tam giác ABC vuông tại A, AB = 6cm và AC = 8cm
=> BC2 = AB2 + AC2 = 36+ 64 = 100
=> BC = 10 cm
b) Xét tam giác AHD và tam giác AHB có ;
AH chung
góc AHD = góc AHB
HD = HB
=> tam giác AHD = tam giác AHB ( c.g.c )
=> AB = AD ( 2 cạnh tương ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha!
a) Vì \(AH\perp BC\left(gt\right)\)
=> \(AH\perp BD.\)
Xét 2 \(\Delta\) vuông \(ABH\) và \(ADH\) có:
\(\widehat{AHB}=\widehat{AHD}=90^0\) (vì \(AH\perp BD\))
\(BH=DH\left(gt\right)\)
Cạnh AH chung
=> \(\Delta ABH=\Delta ADH\) (cạnh huyền - cạnh góc vuông).
=> \(AB=AD\) (2 cạnh tương ứng).
=> \(\widehat{BAH}=\widehat{DAH}\) (2 góc tương ứng).
=> \(AH\) là tia phân giác của \(\widehat{BAD}.\)
b) Xét 2 \(\Delta\) \(ABH\) và \(EDH\) có:
\(BH=DH\left(gt\right)\)
\(\widehat{AHB}=\widehat{EHD}\) (vì 2 góc đối đỉnh)
\(AH=EH\left(gt\right)\)
=> \(\Delta ABH=\Delta EDH\left(c-g-c\right)\)
=> \(\widehat{ABH}=\widehat{EDH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(ED.\)
Chúc bạn học tốt!
a: \(AB=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
b: Vì AB^2+AC^2=BC^2
nên ΔABC vuông tại A
=>AB vuông góc với AC