K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Có hai trường hợp xảy ra:

Trường hợp 1:

(P) đi qua A, song song với hai đường thẳng d và BC. Vectơ chỉ phương của d là v → (-3; -1; 2) và  BC → (-2; 4; 0).

Do đó  n P →  =  v →  ∧  BC →  = (-8; -4; -14).

Phương trình mặt phẳng (P) là: -8(x - 1) - 4(y - 2) - 14(z - 1) = 0 hay 4x + 2y + 7z - 15 = 0

Trường hợp 2:

(P) đi qua A, đi qua trung điểm F(1; 1; 1) của BC, và song song với d.

Ta có:  FA → (0; 1; 0),  FA →    v →  = (2; 0; 3).

Suy ra phương trình của (P) là: 2(x - 1) + 3(z - 1) = 0 hay 2x + 3z - 5 = 0.

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

Ôn tập cuối năm môn hình học 12

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

14 tháng 12 2019

Chọn D

21 tháng 10 2018

 Đáp án C

Phương pháp

Gọi H là hình chiếu của B trên mặt phẳng (Q) đi qua A và song song với (P). Khi đó

Cách giải

Gọi (Q) là mặt phẳng đi qua A và song song với (P) ta tìm được phương trình mặt phẳng (Q): (P): x-2y+2z-5=0, khi đó d  ∈ (Q)

Gọi H là hình chiếu của B trên (Q) ta có 

Phương trình đường thẳng d’ đi qua B và vuông góc với (Q) là

Vậy phương trình đường thẳng d cần tìm là d:

  x + 3 26 = y 11 = z - 1 2

7 tháng 4 2017

Gọi (Q) là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là (x + 2) + 2(y + 1) - (z - 1) = 0 hay x + 2y - z + 5 = 0. Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử Δ là đường thẳng qua A và song song với (P), I là chân đường vuông góc kẻ từ B đến ∆ . Khi đó I ∈ (Q) và BH ≤ BI.

Do đó AH chính là đường phải tìm.

Gọi d là đường thẳng đi qua B và vuông góc với (Q).

Phương trình của d là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để tìm giao điểm H = d ∩ (Q) ta thay phương trình của d vào phương trình của (Q), ta có:

6 + t + 2(6 + 2t) - (5 - t) + 5 = 0 ⇒ t = -3.

Do đó H = (3; 0; 8)

Phương trình đường thẳng AH là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

4 tháng 7 2018

Chọn B

20 tháng 11 2019

14 tháng 6 2017

Đáp án D

Gọi  là hình chiếu vuông góc cảu A trên d

Ta có:

14 tháng 2 2018

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.