K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

\(\overrightarrow{AB}=\left(4;3\right)\) ; \(\overrightarrow{AC}=\left(6;1\right)\Rightarrow2\overrightarrow{AC}=\left(12;2\right)\)

\(\Rightarrow\overrightarrow{u}=\left(12-4;2-3\right)=\left(8;-1\right)\)

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-4-x;-y\right)\\\overrightarrow{MB}=\left(-x;3-y\right)\\\overrightarrow{MC}=\left(2-x;1-y\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\left(2-6x;9-6y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2-6x=0\\9-6y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow M\left(\dfrac{1}{3};\dfrac{3}{2}\right)\)

14 tháng 9 2021

a) Tọa độ vecto u = (-16;4)

6 tháng 1 2022

Gọi tọa độ điểm \(M\) là \(M\left(x;y\right).\)

\(\overrightarrow{MA}=\left(1-x;3-y\right);\overrightarrow{MB}=\left(4-x;-y\right);\overrightarrow{MC}=\left(2-x;-5-y\right).\)

Ta có: \(\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}.\)

\(\left\{{}\begin{matrix}1-x+4-x-3\left(2-x\right)=0.\\3-y-y-3\left(-5-y\right)=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2x+5-6+3x=0.\\3-2y+15+3y=0.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0.\\y+18=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1.\\y=-18.\end{matrix}\right.\) \(\Rightarrow M\left(1;-18\right).\)

a: \(\left\{{}\begin{matrix}x_G=\dfrac{2+4+2}{3}=\dfrac{8}{3}\\y_G=\dfrac{1+0+3}{3}=\dfrac{4}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_I=\dfrac{2+4}{2}=3\\y_I=\dfrac{1+0}{2}=\dfrac{1}{2}\end{matrix}\right.\)

27 tháng 12 2023

a)  Gọi E là trung điểm AB \(\Rightarrow\) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IE}\)

 \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(2\overrightarrow{IE}+3\overrightarrow{IC}=\overrightarrow{0}\)

A B C E I M d

b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|\)

\(=5MI\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|min\Leftrightarrow MImin\)

                                           \(\Leftrightarrow\) M là hình chiếu của I trên d