Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{a^2+b^2}=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2+b^2}\geq 2\sqrt{\frac{a^2+b^2}{a^2b^2}.\frac{4}{a^2+b^2}}=\frac{4}{ab}=\frac{32(a^2+b^2)}{8ab(a^2+b^2)}(1)\)
Tiếp tục áp dụng BĐT Cauchy ngược dấu:
\(8ab(a^2+b^2)=4.(2ab).(a^2+b^2)\leq (2ab+a^2+b^2)^2=(a+b)^4(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{a^2+b^2}\geq \frac{32(a^2+b^2)}{8ab(a^2+b^2)}\geq \frac{32(a^2+b^2)}{(a+b)^4}\) (đpcm)
Dấu "=" xảy ra khi $a=b$
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(P=\left(a+1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{32}+1\right)\left(a^{64}+1\right)\)
\(\Leftrightarrow10P=\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{64}+1\right)\)
\(\Leftrightarrow10P=\left(a^2-1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)
\(\Leftrightarrow10P=\left(a^4-1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)
Tiếp tục rút gọn, ta được : \(10P=a^{128}-1\Leftrightarrow P=\frac{a^{128}-1}{10}=\frac{11^{128}-1}{10}\)