Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải dài lắm bạn ơi,mik làm câu b thui nhé
S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3
Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1
S x3 = S + 3 ^ 204 - 1
S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )
S = 3 ^ 204 - 1 : 2
S = 3 ^ 4 x 51 - 1 : 2
S = (3^4) ^ 51 - 1 : 2
S = 81 ^ 51 - 1 : 2
Vì 81 ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)
=> 81 ^ 51 - 1 co t/c = 0
=> 81 ^ 51 - 1 : 2 co t/c = 5
Hay S có t/c = 5
Vay S co t/c =5
Ung ho nha
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
A=(1x2x3x4)x...x58+(3x12x21x30)x..x174
A=...0x...x58+...0x...x174
A=...0+...0
A=..0
vậy A có tận cùng=0
A=(13x1x2x3x4x...x12x14x...x58)+(39x3x12x21x30x48x...x174)
vì 13;39 đều chia hết 13 mà 13 chia hết 377 nên A chia hết 377
a, \(A=1+2+2^2+...+2^n\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{n+1}\)
\(2A-A=\left(2+2^2+2^3+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)\)
\(\Rightarrow A=2^{n+1}-1\)
Mấy phần kiia cần có thêm dữ kiện
a, \(B=559^{361}-7^{202}\)
\(B=559^{2.180+1}-7^{4.50+2}\)
\(B=\left(559^2\right)^{180}.559-\left(7^4\right)^{50}.49\)
\(B=312481^{180}.559-2401^{50}.49\)
Vì \(312481\)cs tận cùng là 1 nên \(312481^{180}\)cx cs tận cùng là 1
Vì \(2401\)cs tận cùng là 1 nên \(2401^{50}\)cx cs tận cùng là 1
\(\Rightarrow B\)cs tận cùng là \(1.9-1.9=9-9=0\)
Vậy B cs tận cùng là 0
b, Vì B có tận cùng là 0
\(\Rightarrow B⋮10\)
Hok tốt