Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
Ta có \(A=\dfrac{4x-3}{x+2}=\dfrac{4x+8-11}{x+2}=4-\dfrac{11}{x+2}\)
Để \(A\) nguyên thì \(11⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\\x+2=11\\x+2=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=9\\x=-13\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=-1;x=-3;x=9 hoặc x=-13
Để A là số nguyên thì \(4x-3⋮x+2\)
\(\Leftrightarrow-11⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-1;-3;9;-13\right\}\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)
Để A là số nguyên thì \(2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)
Có ai giúp mình với
Để B nguyên thì \(x-3\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{4;2;16;-10\right\}\)