Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=1+3^2+3^4+...+3^{98}+3^{100}\)
\(3^2D=3^2\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)
\(9D=3^2+3^4+3^6+...+3^{100}+3^{102}\)
\(9D-D=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+...+3^{100}\right)\)
\(8D=3^{102}-1\Rightarrow D=\dfrac{3^{102}-1}{8}\)
Đề sai, tớ sửa lại
Ta có :
\(A=2+2^2+..............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...........+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+.........+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...........+2^{59}.3\)
\(\Leftrightarrow A=3\left(2+2^2+..........+2^{59}\right)\)
\(\Leftrightarrow A⋮3\rightarrowđpcm\)
Lại có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+..........+2^{59}\left(1+2+2^2\right)\)
\(\Leftrightarrow A=2.7+2^4.7+............+2^{58}.7\)
\(\Leftrightarrow A=7\left(2+2^3+..........+2^{58}\right)\)
\(\Leftrightarrow A⋮7\rightarrowđpcm\)
Ta tiếp tục có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+..............+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+.............+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+............+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+.........+2^{57}\right)\)
\(\Leftrightarrow A⋮15\rightarrowđpcm\)
a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :
\(12⋮n\)
\(\Leftrightarrow n\inƯ\left(12\right)\)
\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)
Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm
b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :
\(15⋮n-2\)
\(\Leftrightarrow x-2\inƯ\left(15\right)\)
Tới đây tự lập bảng zồi làm típ!
c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :
\(8⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(8\right)\)
Lập bảng rồi làm nhs!
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)
\(\Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\)
\(6x-42=7y-42\)
\(6x=7y\Leftrightarrow x=\dfrac{7}{6}y\)
\(x=-4:\left(7-6\right).7=-28\)
\(y=-28-4=-24\)
b tương tự
Giải:b)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\) nên \(6\left(x-7\right)=7\left(y-6\right)\)
Do đó \(6x-42=7y-42\) nên \(6x=7y\)
Suy ra \(6x-6y=y\) hay \(6\left(x-y\right)=y\)
Nên 6.(-4) = y
Vậy y = -24, x = \(\dfrac{7.\left(-24\right)}{6}\)= -28
c)
\(\dfrac{x+3}{y+5}=\dfrac{3}{5}\) nên \(5\left(x+3\right)=3\left(y+5\right)\)
Do đó \(5x+15=3y+15\) nên \(5x=3y\)
Suy ra \(5x+5y=3y+5y\)
\(5\left(x+y\right)=8y\)
\(5.16=8y\)
Nên \(y=\dfrac{5.16}{8}=\dfrac{80}{8}=10\)
Vậy y = 10, x = 16 - 10 =6
Bài 1:
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)
Lây vế trừ vế, ta được:
\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)
\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)
Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).
Chúc bạn học tốt!
Bài 2:
Có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+...+3^{1986}.273\)
\(\Leftrightarrow B=273\left(1+...+1986\right)\)
Vì \(273⋮13\)
Nên \(B=273\left(1+...+1986\right)⋮13\)
Vậy \(B⋮13\)
Lại có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+...+3^{1984}.2460\)
\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)
Vì \(2460⋮41\)
Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)
Vậy \(B⋮41\).
Chúc bạn học tốt!
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
Ta có :
\(B=3+3^3+3^5+..............+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...............+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=1\left(3+3^3+3^5\right)+..............+3^{1987}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+.............+3^{1987}.273\)
\(\Leftrightarrow B=273\left(1+..........+3^{1987}\right)\)
Mà \(273⋮13\)
\(\Leftrightarrow B⋮13\Leftrightarrowđpcm\)
Lại có :
\(B=3+3^3+3^5+..............+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+..........\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=1\left(3+3^3+3^5+3^7\right)+..........+3^{1985}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+..............+3^{1985}.2460\)
\(\Leftrightarrow B=2460\left(1+............+3^{1985}\right)\)
Mà \(2460⋮41\)
\(\Leftrightarrow B⋮41\rightarrowđpcm\)