K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)

\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11

lạnh quá đừng ra đề nx

 

10 tháng 11 2017

mệt quá

10 tháng 11 2017

a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.

=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).

=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)

=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3

=3.(2+2^3+2^5+...+2^197+2^199)

Vậy tổng S chia hết cho 3.

Xin lỗi bn,mik o làm kịp

15 tháng 12 2017

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 
 
 
 
 
14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

4 tháng 9 2016

a ) 

B=(3+32)+(33+34)+...+(359+360)

B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)

4(4+33+34+...+359)

suy ra:4(4+33+34+...+359)chia hết cho 4

b )

B=(3+32+33)+(34+35+36)+...+(358+359+360)

=3(1+3+9)+34(1+3+9)+...+358(1+3+9)

=13.3+13.34+...+13.358

=13.(3+34+...+358) luôn chia hết cho 13

vậy B chia hết cho 13

4 tháng 9 2016

a) \(B=3+3^2+3^3+..+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)

=>đpcm

b) \(B=3+3^2+3^3+..+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)=13\left(3+..+3^{58}\right)⋮13\)

=>đpcm

5 tháng 10 2017

a) \(B=3+3^2+...+3^{90}\)

\(\Leftrightarrow B=\left(3+3^2\right)+...+\left(3^{89}+3^{90}\right)\)

\(\Leftrightarrow B=\left(3+3^2\right)+...+3^{88}.\left(3+3^2\right)\)

\(\Leftrightarrow B=12+...+3^{88}.12\)

\(\Leftrightarrow B=12.\left(1+...+3^{88}\right)⋮4\left(đpcm\right)\)

b)\(B=3+3^2+...+3^{90}\)

\(\Leftrightarrow B=\left(3+3^2\right)+...+\left(3^{89}+3^{90}\right)\)

\(\Leftrightarrow B=\left(3+3^2\right)+...+3^{88}.\left(3+3^2\right)\)

\(\Leftrightarrow B=12+...+3^{88}.12\)

\(\Leftrightarrow B=12.\left(1+...+3^{88}\right)⋮12\left(đpcm\right)\)

c) \(B=3+3^2+...+3^{90}\)

\(\Leftrightarrow B=\left(3+3^2+3^3\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(\Leftrightarrow B=\left(3+3^2+3^3\right)+...+3^{87}.\left(3+3^2+3^3\right)\)

\(\Leftrightarrow B=39+...+3^{87}.39\)

\(\Leftrightarrow B=39.\left(1+..+3^{87}\right)⋮39\left(đpcm\right)\)

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui