Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
1.
Bài toán tìm 1 chữ số tận cùng là dễ nhất luôn :D Từ nay khi gặp bài này bạn chỉ cần nhớ những quy tắc sau là giải được.Tận cùng = 0,1,5,6 thì lũy thừa lên bao nhiêu cũng vẫn là 0,1,5,6. Ví dụ: 5^9999999 có tận cùng = 5
Tận cùng = 2,4,8 khi nâng lên lũy thừa 4n thì có tận cùng = 6. 2^4 = 16, 2^(24) = 2^(4x6) vẫn tận cùng là 6
Tận cùng = 3,7,9 khi nâng lên lũy thừa 4n thì có tận cùng = 1.
Nhìn vào bài này ta có số này tận cùng bằng 2 vậy khi nâng lên lũy thừa 4n nó sẽ luôn tận cùng là 6
Giờ 2013 = 4x503 + 1 nên 2^2013 = 2^(4x503 + 1) = 2^(4x503) x 2
2^(4x503) tận cùng = 6 đem nhân với 2 sẽ phải có tận cùng bằng 2, ví dụ 36x2 = 72 (bạn nhẩm trong đầu khi nhân là 6x2 = 12 nhớ 1 đó)
Kết luận 2^2013 có tận cùng là 2. Hy vọng câu trả lời của mình sẽ giúp bạn không còn sợ dạng bài này nữa.
số nhỏ nhát là 6
Vậy có số số chia hết cho cả 2,3, là
(996-6):6+1=16(số)
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
các bạn thông cảm mk cần gấp quá nhé ai đúng nhất nhanh nhất mk k cho nhe !
A = 3 + 32 + 33 + ... + 3100
a) 3A = 3( 3 + 32 + 33 + ... + 3100 )
= 32 + 33 + ... + 3101
=> 3A - A = 2A
= 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )
= 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100
= 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
b) A = 3 + 32 + 33 + ... + 3100
= ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 37 + 38 ) + ... + ( 397 + 398 + 399 + 3100 )
= 3( 1 + 3 + 32 + 33 ) + 35( 1 + 3 + 32 + 33 ) + ... + 397( 1 + 3 + 32 + 33 )
= 3.40 + 35.40 + ... 397.40
= 40( 3 + 35 + ... + 397 ) chia hết cho 40
c) Từ ý b) ta có thể suy ra được là A chia hết cho 10 ( vì 40 chia hết cho 10 )
=> A có tận cùng là 0