Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+34+...+3100
\(\Rightarrow3A=3^2+3^3+3^5+...+3^{101}\)
\(\Rightarrow3A-A=2A=3^{101}-3\)
\(\Rightarrow A=\left(3^{101}-3\right):2\)
\(\Rightarrow A=\left(3^{4.25}.3^1-3\right):2\)
\(\Rightarrow A=\left[\left(...1\right).3-3\right]:2\)
\(A=\left[\left(...3\right)-3\right]:2\)
\(A=\left(...0\right):2=...5\)cũng có thể là số chính phương chứ ?
Ta có :
3A=3+32+.................+32015
3A-A hay 2A=32015+...........+3-1+........+32014
2A=32015-1
Ta có cứ số mũ 30 0 chia 4 dư 0
và có tận cùng = 1
31 1 chia 4 dư 1
có tận cùng = 3
32 2 chia 4 dư 2 có tận cùng = 9
33 3 chia 4 dư 3 có tận cùng = 7
Từ đó ta suy ra được
3n nếu n chia 4 dư 0 thì có tận cùng =1
n chia 4 dư 1 có tận cùng = 3
4 dư 2 có tận cùng =9
4 dư 3 có tận cùng =7
bạn hiểu tại sao mk lấy 4 ko vì cứ qua 4 thừa số thì cs tận cùng lại lặp lại 1 lần
Ta có 2015 chia 4 dư 3 Vậy 32015 có tận cùng = 7
Và hiệu 7-1=6 vậy 32015-1 có tận cùng = 6
Ta có nếu cs hàng chục là số lẻ thì cs tận cùng = 8
còn th kia thì có khả năng tận cùng = 3
Trong 2 TH kia thì tận cùng có khả năng =3;8
Ko có số chính phương nào có tận cùng bằng 3;8
Suy ra 1+3+..........+32014 không phải số chính phương
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
S=1+31+32+33+...+330
3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331
3S-S=3^{31}-13S−S=331−1
2S=3^{4.7+3}-12S=34.7+3−1
2S=81^7.27-12S=817.27−1
2S=\overline{......1}.27-12S=......1.27−1
2S=\overline{......7}-1=\overline{......6}2S=......7−1=......6
S=\overline{........3}S=........3
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
bài này trong tương tự ấy
Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:
+, 3^4k = ...1
+, 3^(4k+1) = ....3
+, 3^(4k+2)=....9
+, 3^(4k+3) = ....7
Một số cphương thì ko có tận cùng là 2,3,7,8
Suy ra ta phân tích A như sau:
A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)
Suy ra c/s tận cùng của A chính là c/s tận cùng của:
1.101+3.101+9.101+7.100=2013
Suy ra A có c/s tận cùng là 3
Suy ra A ko phải số cphương
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
Tong B gom 2013 so hang, moi so hang deu chia 4 du 1 nen B chia 4 du 2013 hay B chia 4 du 1
Suy ra 2B chia 4 du 2, KO LA SO CHINH PHUONG.
Chung to...