\(\frac{a^2+b^2}{c^2+d^2}=\frac{a}{c}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai ak..............

d ở đâu vậy

..........................

12 tháng 6 2019

Ha ha là b2 chư em

9 tháng 8 2016

Giải:

a,Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)

=>\(\frac{a}{b}\).\(\frac{c}{d}\)=\(\frac{a}{b}\).\(\frac{a}{b}\)=\(\frac{c}{d}\).\(\frac{c}{d}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta được:

\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2+b^2}{c^2+d^2}\)  (đpcm)

b,Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2c}{2d}\)=\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>(b+d).(a+2c)=(a+c),(b+2d)   (đpcm)

9 tháng 8 2016

tick nha

18 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

b) Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

 

 

24 tháng 7 2016

hình như là a2=bc mà bạn]

 

24 tháng 7 2016

bạn có bít làm bài này k vậy chỉ cho mình với

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

12 tháng 7 2017

giúp mình bài này với

so sánh bằng cách nhanh nhất

a 2013 phần 2012 và 13 phần 12

b 15 phần 46 và 21 phần 62

24 tháng 7 2016

b2=ac mà bạn

24 tháng 7 2016

b) a2=ac\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}\)

c2=bd\(\Rightarrow\) \(\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) = \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) = \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=\(\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

=> đpcm