Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)
\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)
Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)
a/c = c/b => ab= c2
a, a2 + c2/ b2 + c2= a2 + ab / b2 + ab= a( a+b) / b(b+a) = a/b
b, b2 - a2 / a2 + c2 = ( b-a )( b+a ) / a2 + ab= ( b-a )( b+a )/ a( a+b)= b-a/a
Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)
=> Đpcm
Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^n}{b^n}=\frac{c^n}{d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)
=> Đpcm
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
\(\text{Cho a,b,c thỏa mãn a+b ; b+c ; c+a ; a2 + b2 ; b2 + c2 ; c2 + a2 đều nguyên . }\)
\(CMR:a^2+b^2+c^2+d^2-c^2+d^2=2ab-ab\Rightarrow a+b=c\left(mod\right)\)
\(\Rightarrow a+b+c+d>3:2\)(cc cái này quên chưa đánh () nhưng ngại ghi lại thông cảm :) )
\(Mà:a+b+c+d\)(đều nguyên)
Đã chứng minh xong :)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dung tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
BÌnh phương các vế ta được:
\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(đpcm)