\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}+\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+....+\frac{1}{x}\left(1+2+3+...+x\right)\)

   \(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)

   \(=\frac{1}{2}\left(2+3+4+...+\left(x+1\right)\right)\)

   \(=\frac{1}{2}.\frac{\left[\left(x+1\right)+2\right]x}{2}\)

   \(=\frac{1}{4}\left(x+3\right)x\)

\(B=115\)

\(\Leftrightarrow\frac{1}{4}.x\left(x+3\right)=115\)

\(\Leftrightarrow x\left(x+3\right)=115.4\)

\(\Leftrightarrow x\left(x+3\right)=20.23\)

\(\Leftrightarrow x=20\)

Vậy....

9 tháng 1 2020

Bạn ơi dạy mình cách tính dong thứ 3 dấu = thứ nhất đấy phân tích kiểu nào cho nhanh vậy

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

4 tháng 2 2019

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)

\(B=1+\frac{1}{2}\left(1+2\right)\cdot2:2+\frac{1}{3}\left(1+3\right)\cdot3:2+...+\frac{1}{x}\left(1+x\right)\cdot x:2\)

\(B=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{1+x}{2}\)

\(B=1+\frac{\left(1+1+...+1\right)+\left(2+3+...+x\right)}{2}\)

De B = 115

=> \(\frac{\left(1+1+...+1\right)+\left(2+3+...+x\right)}{2}=114\)

=> (1 + 1 + ... + 1) + (2 + 3 + ... + x) = 228

den day chju :v

4 tháng 2 2019

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.............+\frac{1}{x}\left(1+2+3+............+x\right)\)

\(=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}\frac{3.4}{2}+...........+\frac{1}{x}\frac{x\left(x+1\right)}{2}\)

\(=\frac{1}{2}\left(2+3+4+.............+\left(x+1\right)\right)\)

\(=\frac{1}{2}\frac{\left[\left(x+1\right)+2\right]x}{2}\)

\(=\frac{1}{4}\left(x+3\right)x\)

\(B=115\Leftrightarrow\frac{1}{4}.x\left(x+3\right)=115\)

\(\Leftrightarrow x\left(x+3\right)=115.4\)

\(\Leftrightarrow x\left(x+3\right)=20.23\)

\(\Leftrightarrow x=20\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

26 tháng 10 2016

a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)

        \(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)

        \(\frac{2}{5}-x=-3\)

                   \(x=\frac{2}{5}-\left(-3\right)\)

                   \(x=\frac{2}{5}+3\)

                   \(x=\frac{3}{5}-\frac{15}{5}\)

                   \(x=-\frac{12}{5}\)

Vay \(x=-\frac{12}{5}\) 

    

  

26 tháng 10 2016

b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)

        \(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)

        \(-3+\frac{3}{x}=\frac{-25}{12}\)

                     \(\frac{3}{x}=\frac{-25}{12}+3\)

                      \(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)

                      \(\frac{3}{x}=\frac{5}{6}\)

                      \(\frac{18}{6x}=\frac{5x}{6x}\)

Đèn dây , bạn tự làm tiếp nhé , de rồi chứ

6 tháng 4 2020

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)

\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)

\(=\frac{1}{2}.\frac{\left(x+1+2\right)x}{2}=\frac{1}{4}\left(x+3\right)x\)

Để B=115 thì \(\frac{1}{4}\left(x+3\right)x=115\)

\(\Leftrightarrow\frac{1}{4}x^2+\frac{3}{4}x-115=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-23\left(loai\right)\end{matrix}\right.\)

Vậy x=20 thì B=115