![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
3.
x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}
ƯC(100;500) =100
suy ra x =100
BC(10;25) =50
suy ra x =50
tick nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(A=111111...1\)có 100 số 1
\(B=4444...4\)có 50 số 4
\(\Rightarrow\)\(A+B+1=111111...555555...56\)\(⋮2\)
\(\Rightarrow\)A+B+1 là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2010^{100}+2010^{99}\)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011⋮2011\left(dpcm\right)\)
b) \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11⋮11\left(dpcm\right)\)
c) \(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5⋮5\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Việt làm sai cmnr: số tận cùng là 0 chia 2 vừa có thể tận cùng 0, 5, hoặc 4,6,8...2,
Ta có 9= 1( mod 4)
Vậy 9100 chia 4 dư 1
=>9100= 1100=1( mod) 4
94100\(⋮4\)
\(1994^{100}⋮4\)
=> B chia 4 dư 2
Mà số chính phương chia 4 chỉ dư 0 hoặc 1
Vậy B ko là số chính phương