\(B=1+3^2+3^3+3^4+...+3^{99}\)

a) CMR : B chia hết cho 13

b) CMR : B ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

2) Gọi 5 số tự nhiên liên tiếp là : a;a+1;a+2;a+3;a+4 

Tổng bằng : a+a+1+a+2+a+3+a+4=5a+10 Vậy số này chia chỉ chia hết cho 5 

Đề bài bị sai : 

b) Gọi 5 số lẻ liên tiếp là : 2k+1;2k+3;2k+5;2k+7;2k+9 

Tổng là : 2k+1+2k+3+2k+5+2k+7+2k+9=10k +25 =10k+20+5 =10(k+2)+5 

10(k+2) chia hết cho 10 ; suy ra 10(k+2)+5 chia 10 dư 5 

3) a) abcabc=abc.1000+abc=abc.1001 

Mà 1001=7.11.13 

Đấy thế là xong 

b) abcdeg = 

29 tháng 10 2016

Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .

=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )

Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )

\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)

\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)

\(D=1.42+6^2.42+...+6^{98}.42\)

\(D=\left(1+6^2+...+6^{98}\right).42\)

Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)

Vậy : \(D⋮7\)

b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)

\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)

\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(E=3^n.30+2^n.12\)

\(E=3^n.5.6+2^n.2.6\)

\(E=\left(3^n.5+2^n.2\right).6\)

Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)

Vậy : \(E⋮6\)

29 tháng 10 2016

a)D=6+62+63+...+699+6100

D=(6+62)+(63+64)+...+(699+6100)

D=42.1+62..42+...+698.42

D=42.(1+62+...+698)\(⋮\)7

\(\Rightarrow\)D\(⋮\)7

 

31 tháng 10 2018

Tham khảo bài tương tự nhé !

Ta đặt biểu thức trên là S 
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P 
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41 

P có 996 số hạng 

Nhóm P thành từng bộ 3 số hạng 
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990 
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4) 
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986) 
= 91 x (1 + 3^6 + .... + 3^1986) 
Do 91 chia hết cho 13 nên P cũng chia hết cho 13 

Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có: 
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984) 
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984) 
Do 820 chia hết cho 41 nên P cũng chia hết cho 41 

31 tháng 10 2018

*(a^n-1)=(a-1)(1+a+a^2+..+a^(n-1)) 

=>1+a+a^2+...+a^(n-1)=(a^n-1)/(a-1) 

*a^(n.m)=(a^n)^m. 
Ta có: 
S=3+3^3+...+3^1991= 
=3(1+3^2+3^4+...+3^1990) 
=3(1+9+9^2+...+9^995) 
=3(9^996-1)/8 
=3P/8. 
với P=9^996-1. 
vì 13 và 8 là 2 số ngyuên tố cùng nhau, tương tự 41 và 8 là 2 số nguyên tố cùng nhau, nên ta chỉ cần cm P cha hết cho 13 và 41. 
a) ta có: 
P=9^996-1= 
=(3^2)^996-1 
=3^1992-1 
=(3^3)^664-1 
=27^664-1 
=(27-1)(1+27^2+...+27^663) 
=26(1+27^2+..+27^663) 
mà 26 chia hết cho 13, nên P chia hết cho 13. 
b)ta lại có: 
P=9^996-1= 
=(9^4)^249-1 
=6561^249-1 
=(6561-1)(1+...+6561^248) 
=6560(1+6561+...+6561^248) 
thấy 6560 chia hết cho 41 nên P chia hết cho 41. 
Với cách này ta còn cm được S chia hết cho rất nhiều số khác nữa.

10 tháng 5 2017

câu b có thể bạn sai đề

10 tháng 5 2017

Giải:

Ta có:

\(\overline{ababab}=\overline{ab0000}+\overline{ab00}+\overline{ab}\)

\(=\overline{ab}.10000+\overline{ab}.100+\overline{ab}\)

\(=\overline{ab}.\left(10000+100+1\right)\)

\(=\overline{ab}.10101\)

\(10101⋮3\) nên \(\overline{ab}.10101⋮3\).

Vậy, \(\overline{ababab}⋮3\).

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

25 tháng 10 2016

5, 87ab=8784

18 tháng 8 2016

C=(1+3+32)+(33+34+35)+...+(39+310+311)

C=13+33(1+3+32)+...+39(1+3+32)

C=13+33.13+...+39.13

C=13(1+33+...+39)

Vì nó có thừa số 13 nên chia hết cho 13 (1+33+...+39 là STN)

C=(1+3+32+33)+(34+35+36+37)+(38+39+310+311)

C=40+34(1+3+32+33)+38(1+3+32+33)

C=40+34.40+38.40

=40(1+34+38)

=>C chia hết cho 40

14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.