K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Bài làm:

Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)

=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)

<=> \(2B=1-\frac{1}{3^{2017}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)

=> \(B< \frac{1}{2}\)

27 tháng 8

A=111+121+...+701

\(A = \left(\right. \frac{1}{11} + \frac{1}{12} + . . . + \frac{1}{20} \left.\right) + \left(\right. \frac{1}{21} + \frac{1}{22} + . . . + \frac{1}{30} \left.\right)\)

\(+ \left(\right. \frac{1}{31} + \frac{1}{32} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{41} + \frac{1}{42} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{51} + \frac{1}{52} + . . . + \frac{1}{60} \left.\right)\)

\(+ \left(\right. \frac{1}{61} + \frac{1}{62} + . . . + \frac{1}{70} \left.\right)\)

\(\Rightarrow A < \frac{1}{10} \cdot 10 + \frac{1}{20} \cdot 10 + \frac{1}{30} \cdot 10 + . . . + \frac{1}{60} \cdot 10\)

\(A < 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{6}\)

\(A < 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \left(\right. \frac{1}{4} + \frac{1}{5} \left.\right)\)

\(A < 2 + 0 , 45 < 2 , 5\)

27 tháng 8

A= 11 1 ​ + 12 1 ​ +...+ 70 1 ​ A = ( 1 11 + 1 12 + . . . + 1 20 ) + ( 1 21 + 1 22 + . . . + 1 30 ) A=( 11 1 ​ + 12 1 ​ +...+ 20 1 ​ )+( 21 1 ​ + 22 1 ​ +...+ 30 1 ​ ) + ( 1 31 + 1 32 + . . . + 1 40 ) + ( 1 41 + 1 42 + . . . + 1 50 ) + ( 1 51 + 1 52 + . . . + 1 60 ) +( 31 1 ​ + 32 1 ​ +...+ 40 1 ​ )+( 41 1 ​ + 42 1 ​ +...+ 50 1 ​ )+( 51 1 ​ + 52 1 ​ +...+ 60 1 ​ ) + ( 1 61 + 1 62 + . . . + 1 70 ) +( 61 1 ​ + 62 1 ​ +...+ 70 1 ​ ) ⇒ A < 1 10 ⋅ 10 + 1 20 ⋅ 10 + 1 30 ⋅ 10 + . . . + 1 60 ⋅ 10 ⇒A< 10 1 ​ ⋅10+ 20 1 ​ ⋅10+ 30 1 ​ ⋅10+...+ 60 1 ​ ⋅10 A < 1 + 1 2 + 1 3 + . . . + 1 6 A<1+ 2 1 ​ + 3 1 ​ +...+ 6 1 ​ A < 1 + 1 2 + 1 3 + 1 6 + ( 1 4 + 1 5 ) A<1+ 2 1 ​ + 3 1 ​ + 6 1 ​ +( 4 1 ​ + 5 1 ​ ) A < 2 + 0 , 45 < 2 , 5 A<2+0,45<2,5

Đây qu, phiền bạn tick giup mình nha

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

22 tháng 9 2019

ko hiểu

22 tháng 9 2019

\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)

=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)

=> \(2M=1-\frac{1}{3^{39}}\)

=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)

do \(1-\frac{1}{3^{39}}< 1\)

=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)

Vay \(M< \frac{1}{2}\)

Chuc bn hoc tot !

N
11 tháng 8 2017

a)  \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)

\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )

\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)

\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)

b) Chút nữa mình làm nhé ^^

11 tháng 8 2017

b) 

\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

Ta so sánh giữa A và Q.

\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)

\(\Rightarrow Q< A\)

Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)

Ta có :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)

Ta được:

\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)

16 tháng 4 2019

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A< 1-\frac{1}{2017}=\frac{2016}{2017}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{2016}{2017}\left(đpcm\right)\)