Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (3^2023 - 3^2022) + (3^2021 - 3^2020) + ... + (3 - 1)
= 3^2022(3 - 1) + 3^2020(3 - 1) + ... + 1(3 - 1)
= 2(3^2022 + 3^2020 + ... + 1)
Đặt: A = 3^2023 + 3^2021 + ... + 3 B = 3^2022 + 3^2020 + ... + 1
Ta có: B = A - 3^2022 A = 3B
=> 2B = A
Mặt khác: A + B = 3^2023 + 3^2022 + 3^2021 + ... + 3 + 1 Đây là tổng của một cấp số nhân với công bội là 3.
=> A + B = (3^2024 - 1) / 2
Từ đó suy ra: B = (A + B) / 2 - A = (3^2024 - 1) / 4 - A
= (3^2024 - 1 - 4A) / 4
-
Nhóm 5 số hạng liên tiếp: Ta sẽ nhóm B thành các nhóm 5 số hạng liên tiếp. Mỗi nhóm sẽ có dạng: 3^k - 3^(k-1) + 3^(k-2) - 3^(k-3) + 3^(k-4) = 3^(k-4)(3^4 - 3^3 + 3^2 - 3 + 1) = 3^(k-4) * 61
-
Phân tích:
- Ta thấy 61 không chia hết cho 5.
- Tuy nhiên, khi nhân 61 với các lũy thừa của 3, ta sẽ luôn thu được một số có chữ số tận cùng là 3.
- Khi trừ đi các số hạng tiếp theo (3^(k-1), 3^(k-2), ...), chữ số tận cùng của kết quả vẫn sẽ là 3 hoặc 8 (do 3 - 1 = 2, 8 - 1 = 7).
- Quan trọng: Không có số nào có chữ số tận cùng là 3 hoặc 8 mà chia hết cho 5.
Kết luận:
- Từ phân tích trên, ta thấy mỗi nhóm 5 số hạng liên tiếp khi cộng lại sẽ không chia hết cho 5.
- Do đó, B cũng sẽ không chia hết cho 5.
Kết luận chung:
- Chúng ta đã chứng minh được B chia hết cho 2.
- Tuy nhiên, B lại không chia hết cho 5.
A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)
Gọi ước chung lớn nhất của
22021 + 32021 và 22022+32022 là d (d\(\in\)N*)
Ta có : \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
Trừ vế với vế ta được 32022 - 2.32021 ⋮ d
⇒ 32021.( 3 - 2) ⋮ d
⇒ 32021 ⋮ d
⇒ d \(\in\){ 1; 3; 32; 33;........32021)
nếu d \(\in\) { 3; 32; 33;.....32021) thì
⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )
vậy d = 1
Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(A=8\left(1+8\right)+8^3\left(1+8\right)+...+8^{2021}\left(1+8\right)\)
\(=8.9+8^3.9+...+8^{2021}.9=9\left(8+8^3+...+8^{2021}\right)⋮9\)
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)