Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+3x^2+3x+9=x^2\left(x+3\right)+3\left(x+3\right)=\left(x^2+3\right)\left(x+3\right)\).
Số nguyên \(\left(x^2+3\right)\left(x+3\right)\) luôn có hai ước là \(x^2+3,x+3\) nên để \(\left(x^2+3\right)\left(x+3\right)\)là nguyên tố thì một trong hai ước của nó phải bằng 1.
Vì \(x^2+3>1,\) với mọi x nên \(x+3=1\Leftrightarrow x=-2\).
Thay \(x=-2\) vào \(\left(x^2+3\right)\left(x+3\right)\) ta được \(\left(x^2+3\right)\left(x+3\right)=\left[\left(-2\right)^2+3\right]\left(-2+3\right)=7\). (thỏa mãn).
Vậy n = -2 là giá trị cần tìm.
Ta có: \(B=x^3+3x^2+3x+9\)
\(=x^2\left(x+3\right)+3\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3\right)\)
Để B là số nguyên tố thì: \(\left[{}\begin{matrix}x+3=1\\x^2+3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2=-2\left(voli\right)\end{matrix}\right.\)
Thay \(x=-2\) vào B ta được:
\(B=\left(-2+3\right)\left[\left(-2\right)^2+3\right]=7\) là số nguyên tố.
Vậy \(x=-2\)
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
Ta có: \(B=x^3+3x^2+3x+9=x^2\left(x+3\right)+3\left(x+3\right)\)
\(\Rightarrow B=\left(x+3\right)\left(x^2+3\right)\)
Để B là số nguyên tố => phải có một số bằng 1
Vì \(x^2\ge0\Rightarrow x^2+3\ge3>1\)
\(\Rightarrow x+3=1\Rightarrow x=1-3=-2\)
Vậy x = -2
B = (x+3).(x^2+3)
Để B là số nguyên tố => x+3 = 1 hoặc x^2+3 = 1
=> x=-2
Khi đó : B = 1.(4+3) = 7 là số nguyên tố (tm)
Vậy x=-2
k mk nha