Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\left(\dfrac{a+b+c}{abc}\right)=4-2=2\)
1) \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
Đặt \(\left(x^2+y^2;xy\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=7\\\left(a-b\right)\left(a+b\right)=21\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
Tới đây tiếp tục thay vào giải, lười rồi :D
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)
Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow abc=1\left(TMGT\right)\)
Ta có:
\(\frac{1}{a+2}=\frac{1}{\frac{x}{y}+2}=\frac{1}{\frac{x+2y}{y}}=\frac{y}{x+2y}=\frac{y^2}{xy+2y^2}\)
Tương tự:
\(\frac{1}{b+2}=\frac{z^2}{yz+z^2};\frac{1}{c+2}=\frac{x^2}{zx+x^2}\)
Ta có:
\(\frac{x^2}{xz+2x^2}+\frac{y^2}{xy+2y^2}+\frac{z^2}{yz+2z^2}\ge\frac{\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+xy+yz+zx}\)
Mặt khác \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)+xy+yz+zx\le3\left(x^2+y^2+z^2\right)\)
Rồi OK.Đến đây tịt r:( GOD nào vào thông não hộ ạ:(
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
a) Đặt \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall m\)
=>pt luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1;x2 là 2 nghiệm phân biệt của pt. Theo hệ thức Vi-ét: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{cases}}\)
c) \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\Leftrightarrow\left(2m+2\right)^2-2\left(m-4\right)=10\)
\(\Leftrightarrow4m^2+8m+4-2m+8=10\Leftrightarrow4m^2+6m+2=0\Leftrightarrow2m^2+3m+1=0\)
\(\Leftrightarrow2m^2+2m+m+1=0\Leftrightarrow2m\left(m+1\right)+\left(m+1\right)=0\Leftrightarrow\left(m+1\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\2m+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-\frac{1}{2}\end{cases}}\)
Lời giải:
Phản chứng. Giả sử với điều kiện đã cho thì cả hai PT vô nghiệm. Tức là:
\(\left\{\begin{matrix} \Delta_1=b^2-4c<0\\ \Delta_2=c^2-4b< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} b^2< 4c\\ c^2< 4b\end{matrix}\right.\) (1)
Vì \(b^2,c^2>0\) nên từ \((1);(2)\Rightarrow b,c>0\)
Không mất tính tổng quát giả sử \(b>c\Rightarrow \frac{1}{b}< \frac{1}{c}\)
\(\Rightarrow \left\{\begin{matrix} \frac{2}{b}< \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\\ \frac{2}{c}> \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b>4\\ c<4\end{matrix}\right.(2)\)
Khi đó từ (1) và \((*)\) suy ra \(b^2< 4c< 4.4\Rightarrow b< 4\) (mâu thuẫn với \((*)\) )
Do đó điều giả sử sai. Tức là luôn tồn tại ít nhất một trong hai giá trị \(\Delta\) không âm, tức là ít nhất một trong hai phương trình có nghiệm (đpcm)
từ hệ thức: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}b;c\ne0\\2\left(b+c\right)=bc\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\Delta_1=b^2-4c\\\Delta_2=c^2-4b\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
\(\Delta=\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)(3)
Delta >0 => delta1 hoặc delta 2 >=0 => dpcm