Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{x+2017}+2018\)
a) Đề biểu thức trên có nghĩa thì:
\(x+2017\ge0\Rightarrow x\ge-2017\)
b) Với mọi \(x\ge-2017\) ta có:
\(\sqrt{x+2017}\ge0\)
\(\Rightarrow\sqrt{x+2017}+2018\ge2018\)
Dấu "=" xảy ra khi:
\(\sqrt{x+2017}=0\Rightarrow x=-2017\)
\(\Rightarrow MIN_B=2018\) khi \(x=-2017\)
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
Ta có:
a) A = |x - 2| + |x - 4| + 2017|
=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019
Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0
<=> 2 \(\le\)x \(\le\)4
Vậy MinA = 2019 <=> 2 \(\le\)x \(\)4
b) Ta có: B = |2019 - x| + |2020 - x|
=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0
<=> 2019 \(\le\)x \(\le\)2020
Vậy MinB = 1 <=> 2019 \(\le\)x \(\le\)2020
là hai số lẻ
Nếu là số chẵn
Để lẻ lẻ
Nếu lẻ chẵn
Do đó chẵn (không thỏa mãn)
Với
Vì
Do và
Vậy:
1.A)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9