\(3x+2+1993b^2\)là hợp số với mọi số tự nhiên x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Vì \(b\in P;b\ne3\)

\(\Rightarrow\orbr{\begin{cases}b\text{≡}2\left(mod3\right)\\b\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}b^2\text{≡}4\text{≡}1\left(mod3\right)\\b^2\text{≡}1^2\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow b^2\text{≡}1\left(mod3\right)\)

\(\Rightarrow1993b^2\text{≡}1993\text{≡}1\left(mod3\right)\)

Lại có \(3x\text{≡}0\left(mod3\right)\)

\(2\text{≡}2\left(mod3\right)\)

\(\Rightarrow A=3x+2+1993b^2\text{≡}0+2+1\text{≡}3\text{≡}0\left(mod3\right)\)

\(x\in N;b>1\Rightarrow A>0+2+1993.2^2>3\)

\(\Rightarrow\)A là hợp số

Vậy ...

28 tháng 10 2016

b nguyên tố khác 3

áp dụng t/c "bình phương số lẻ luôn có dạng 3k+1" ta có:

nếu b =2 số chắn duy nhất A=3x+2+1993.4 chia hết cho 3

b^2=3k+1 

A=3x+2+1993(3k+1)=3x+1993.3k+3 luôn chia hết cho 3 với mọi x tự nhiên => dpcm

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

13 tháng 10 2019

Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2

TH1: p = 3k+1

\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)

\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)

-> a chia hết cho 3

TH2: p = 3k+2

\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)

\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)

-> a chia hết cho 3

Vậy a là hợp số

14 tháng 10 2019

bn oi nhầm rồi

\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)

15 tháng 1 2017

\(n\) chẵn thì \(A\) chẵn đúng không?

\(n\) lẻ thì \(n^2\) và \(5n\) là các số lẻ nên \(A\) cũng chẵn.

Vậy \(A\) là hợp số.

14 tháng 1 2017

Nếu \(n\) lẻ thì \(A\) chẵn mà \(n\) chẵn thì \(A\) cũng chẵn. Hết!

24 tháng 1 2022

Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p

Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)

⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12

⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp

Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)

⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)

 

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1