Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(B\in Z\Rightarrow\frac{7}{x^2-x+1}\in Z\Rightarrow7⋮\left(x^2-x+1\right)\Rightarrow x^2-x+1\in\left\{1;7\right\}\left(x^2-x+1>0\right)\)
TH1: \(x^2-x+1=1\Rightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\) (thỏa mãn)
TH2: \(x^2-x+1=7\Rightarrow x^2-x-6=0\Rightarrow\left(x+2\right)\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)(thỏa mãn)
Vậy \(x\in\left\{0;1;-2;3\right\}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)
a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)
A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)
đến đây lập bảng xét giá trị nha
b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)
bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu
a) Rút gọn :
ĐKXĐ : \(x\ne4,x\ne3\)
Ta có : \(Q=\frac{12x-45}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\)
\(=\frac{3\left(4x-15\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(2x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)
\(=\frac{12x-45-x^2-2x+15-2x^2+11x-12}{\left(x-4\right)\left(x-3\right)}\)
\(=\frac{-3x^2+21x-42}{\left(x-4\right)\left(x-3\right)}\)
... Chắc tui rút gọn sai òi :))
a) \(ĐKXĐ:x\ne\pm1\)
\(A=\frac{x^3-2x^2+x}{x^2-1}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x^2-x}{x+1}\)
b) Để A có giá trị nguyên
\(\Leftrightarrow\frac{x^2-x}{x+1}\inℤ\)
\(\Leftrightarrow x^2-x⋮x+1\)
\(\Leftrightarrow x^2-x-2+2⋮x+1\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)+2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Ta sẽ loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;0;-3\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;0;-3\right\}\)
Câu 1:
\(M=\frac{2|x-3|}{\left(x+5\right)\left(x-3\right)}\)
Với \(x>3\)M trở thành \(M=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\frac{2}{x+5}\)
Với \(x< 3\)M trở thành \(M=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Câu b:
- \(x>3\)ta có :để M nguyên 2 chia hết cho x+5 hay x +5 là ước của 2 nên : x+5 = 2 => x =-3 loại
- \(x< 3\)là ta : M nguyên khi x+5 là ước của -2 ta có : x+5 = -2 => x =-7
Vậy x=-7
\(B=\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=1+\frac{4}{x-2}\)
\(B\)nguyên suy ra \(\frac{4}{x-2}\)nguyên mà \(x\inℤ\)suy ra \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Thử lại các giá trị đều thỏa mãn.