\(\frac{x+2}{x-2}\)

Tìm x\(\in\)Z để B có giá tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 11 2020

\(B=\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=1+\frac{4}{x-2}\)

\(B\)nguyên suy ra \(\frac{4}{x-2}\)nguyên mà \(x\inℤ\)suy ra \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)

Thử lại các giá trị đều thỏa mãn. 

4 tháng 11 2018

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(B\in Z\Rightarrow\frac{7}{x^2-x+1}\in Z\Rightarrow7⋮\left(x^2-x+1\right)\Rightarrow x^2-x+1\in\left\{1;7\right\}\left(x^2-x+1>0\right)\)

TH1: \(x^2-x+1=1\Rightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\) (thỏa mãn)

TH2: \(x^2-x+1=7\Rightarrow x^2-x-6=0\Rightarrow\left(x+2\right)\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)(thỏa mãn) 

Vậy \(x\in\left\{0;1;-2;3\right\}\)

10 tháng 3 2020

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)

\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)

\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)

4 tháng 7 2015

a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)

A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)

đến đây lập bảng xét giá trị nha

b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)

bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu

1 tháng 3 2020

a) Rút gọn :

ĐKXĐ : \(x\ne4,x\ne3\)

Ta có : \(Q=\frac{12x-45}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\)

\(=\frac{3\left(4x-15\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x-4\right)\left(x-3\right)}-\frac{\left(2x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)

\(=\frac{12x-45-x^2-2x+15-2x^2+11x-12}{\left(x-4\right)\left(x-3\right)}\)

\(=\frac{-3x^2+21x-42}{\left(x-4\right)\left(x-3\right)}\)

... Chắc tui rút gọn sai òi :))

5 tháng 4 2020

a) \(ĐKXĐ:x\ne\pm1\)

\(A=\frac{x^3-2x^2+x}{x^2-1}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x^2-x}{x+1}\)

b) Để A có giá trị nguyên

\(\Leftrightarrow\frac{x^2-x}{x+1}\inℤ\)

\(\Leftrightarrow x^2-x⋮x+1\)

\(\Leftrightarrow x^2-x-2+2⋮x+1\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)+2⋮x+1\)

\(\Leftrightarrow2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)

Ta sẽ loại các giá trị ktm

\(\Leftrightarrow x\in\left\{-2;0;-3\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;0;-3\right\}\)

31 tháng 5 2017

Câu 1:

\(M=\frac{2|x-3|}{\left(x+5\right)\left(x-3\right)}\)

Với \(x>3\)M trở thành \(M=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\frac{2}{x+5}\)

Với \(x< 3\)M trở thành \(M=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)

Câu b:

  • \(x>3\)ta có :để M nguyên 2 chia hết cho x+5  hay x +5 là ước của 2 nên : x+5 = 2 => x =-3 loại
  • \(x< 3\)là ta : M nguyên khi x+5 là ước của -2 ta có : x+5 = -2 => x =-7

Vậy x=-7