Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2\sqrt{x}+1}{\sqrt{x-1}}\) là số nguyên thì \(\left(\frac{2\sqrt{x}+1}{\sqrt{x-1}}\right)^2\)nguyên hay \(\frac{4x+1}{x-1}\) nguyên
\(x-1\ne0\Leftrightarrow x\ne1\) và (x-1 là số chính phương nên x - 1 chỉ có thể là 4,9,16,25,....) hay x chỉ có thể là: 5,10,17,26,....
Thử lần lượt các số trên dễ thấy không có x thỏa mãn đề bài hay \(x\in\varnothing\)
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
B = \(1+\frac{4}{\sqrt{x}-3}\)
để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)
=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên \(\sqrt{x}-3\in\left(1;4\right)\)
\(\sqrt{x}\)\(\in\)(4;7)
x \(\in\)(16;49)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Ta co : x+1=(x-3)+4.Ma x-3 chia het cho x-3 nen 4 cung phai chia het cho x-3 hay x-3€ U(4)=(-4;-2;-1;1;2;4)
Ta co:
x-3 =-4=> x=-1( chon)
x-3=-2=> x=1( chon)
x-3=-1=> x=2( chon)
x-3=1=> x=4( chon)
x-3 =2=> x=5(chob)
x-3=4=> x=7( chon)
Tinh ra thay so vao nhe
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để B nguyên thì\(\frac{4}{\sqrt{x}-3}\) nguyên => \(\sqrt{x}-3\) phải là ước của 4.Đến đây thì bài toán dể rồi.
Ta có: \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để B nguyên thì \(\frac{4}{\sqrt{x}-3}\) nguyên <=> \(\left(\sqrt{x}-3\right)\in\text{Ư}\left(4\right)\)